Answer:
a

b
The value is 
Explanation:
From the question we are told that
The mass is
The spring constant is 
The instantaneous speed is 
The position consider is x = 0.750A meters from equilibrium point
Generally from the law of energy conservation we have that
The kinetic energy induced by the hammer = The energy stored in the spring
So

Here a is the amplitude of the subsequent oscillations
=> 
=> 
=> 
Generally from the law of energy conservation we have that
The kinetic energy by the hammer = The energy stored in the spring at the point considered + The kinetic energy at the considered point

=> 
=> 
Answer:
2000 W
Explanation:
First of all, we need to find the output voltage in the transformer, by using the transformer equation:

where here we have
V1 = 200 V is the voltage in the primary coil
V2 is the voltage in the secondary coil
N1 = 250 is the number of turns in the primary coil
N2 = 500 is the number of turns in the secondary coil
Solving for V2,

Now we can find the power output, which is given by
P = VI
where
V = 400 V is the output voltage
I = 5 A is the output current
Substituting,
P = (400 V)(5 A) = 2,000 W
Answer:
Yellow dwarfs are small, main sequence stars. The Sun is a yellow dwarf. A red dwarf is a small, cool, very faint, main sequence star whose surface temperature is under about 4,000 K. Red dwarfs are the most common type of star. Proxima Centauri is a red dwarf.
Explanation:
Answer:
angle of incidence for the second mirror is 55.4 degree
Explanation:
Given data;
Angle between two mirror is 90 degree
Incident angle on first mirror is 34.6 degree
For first mirror
Angle of incidence is equal to angle of reflection
34.6 degree = angle of reflection

Now , for the triangle ABC [from figure]



The angle of incidence for
angle of incidence for the second mirror is 55.4 degree