Answer:

Explanation:
We are given that
Initial kinetic energy of an electron=K
Distance=d
Final velocity=v=0
Charge,q=-1e
We have to find the magnitude of electric field.
Work done=
Using the formula
Work done=
Using work energy theorem
Work done=Final K.E-Initial K.E=0-K
Work done=-K
Substitute the values
-K=-eEd
K=eEd

Hence, the magnitude of the electric field=
Answer:
Left
Explanation:
The force is applied opposite of the acceleration.
-- The potential energy of a 12-lb bowling ball up on the shelf
doesn't have anything to do with the temperature of the ball or
the shelf.
-- The potential energy of a jar full of gas does depend on the
temperature of the gas. The warmer it is, the greater its pressure
is, and the more work it can do if you let it out through a little hole
in the jar. If it gets hot enough, it'll have enough potential energy
to blow the jar to smithereens.
The study of EM is essential to understanding the properties of light, its propagation through tissue, scattering and absorption effects, and changes in the state of polarization. ... Since light travels much faster than sound, detection of the reflected EM radiation is performed with interferometry.