1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenKa [72]
3 years ago
9

When it reaches an altitude of 3600 m, where the temperature is 5.0∘C and the pressure only 0.68 atm, how will its volume compar

e to that at sea level?
Physics
1 answer:
dalvyx [7]3 years ago
7 0

Answer:

The question was incomplete. Here is the complete question.

Explanation:

A helium-filled balloon escapes a child’s hand at sea level and 20.0C. When it reaches an altitude of 3600 m, where the temperature is 5.0∘C and the pressure only 0.68 atm, how will its volume compare to that at sea level?

The ideal gas equation:

PV = nRT

P = absolute pressure

V = Volume of a gas

n = no of moles of a gas

R = ideal gas constant

T = Absolute temperature of a gas

For initial and final states:

P_{i}V_{i} = nRT_{i}   \\P_{f}V_{f} = nRT_{f}   \\\frac{V_{f} }{V_{i} } = \frac{P_{i}T_{f} }{P_{f}T_{i} }

= 1.4

You might be interested in
A uniform solid disk of mass 5.00 kg and diameter 47.0 cm starts from rest and rolls without slipping down a 40.0 ∘ incline that
saveliy_v [14]

Answer:

The speed it reaches the bottom is

v=6.51m/s

Explanation:

Given: m=5.0kg, r=47cm\frac{1m}{100cm}=0.47m

Using the conservation of energy theorem

U_i=K_E+K_{ER}

m*g*h=\frac{1}{2}*m*v^2+\frac{1}{2}*I*w^2

v=r*w, I=\frac{1}{2}*m*r^2

m*g*h=\frac{1}{2}*m*(r*w)^2 +\frac{1}{2}*[\frac{1}{2} *m*r^2]*w^2

m*g*h=\frac{3}{4}*m*r^2*w^2

g*h=\frac{3}{4}*r^2*w^2

Solve to w'

w^2=\frac{4*g*h}{3*r^2}

h=x*sin(30)=6.5m*sin(30)=3.25m

w=\sqrt{\frac{4*9.8m/s^2*3.25m}{3*(0.235m)^2}}

w=27.74rad/s

v=27.74rad/s*0.235m=6.51m/s

7 0
3 years ago
Suppose that the collector is held at a small negative voltage with respect to the grid. Will the accelerated electrons reach th
Leona [35]

Answer:

B) Yes, but only those electrons with energy greater than the potential difference established between the grid and the collector will reach the collector.

Explanation:

In the case when the collector would held at a negative voltage i.e. small with regard to grid So yes the accelerated electrons would be reach to the collecting plate as the kinetic energy would be more than the potential energy that because of negative potential

so according to the given situation, the option b is correct

And, the rest of the options are wrong

3 0
3 years ago
Consider two waves defined by the wave functions y1(x,t)=0.50msin(2π3.00mx+2π4.00st) and y2(x,t)=0.50msin(2π6.00mx−2π4.00st). Wh
guapka [62]

Answer:

They two waves has the same amplitude and frequency but different wavelengths.

Explanation: comparing the wave equation above with the general wave equation

y(x,t) = Asin(2Πft + 2Πx/¶)

Let ¶ be the wavelength

A is the amplitude

f is the frequency

t is the time

They two waves has the same amplitude and frequency but different wavelengths.

4 0
3 years ago
How did mount st. Helen get its name
steposvetlana [31]

The modern name, Mount St. Helen's, was given to the volcanic peak in 1792 by seafarer and explorer Captain George Vancouver of the British Royal Navy. He named it in honor of fellow countryman Alleyne Fitzherbert, who held the title 'Baron St. Helen's.

5 0
3 years ago
Classes are canceled due to snow, so you take advantage of the extra time to conduct some physics experiments. You fasten a larg
valentina_108 [34]

Answer:

-time it takes for the sled to come to a stop after launch of rocket = 7.244 s

-distance sled has travelled from its starting point by the time it finally comes to rest is = 234.8655 m

Explanation:

From the question, looking at the motion while accelerating, we have;

Initial velocity; u = 0 m/s

Acceleration; a = 13.5 m/s²

Time; t = 3.3 s

Let's use first equation of motion to find final velocity (v).

v = u + at

v = 0 + (13.5 × 3.3)

v = 44.55 m/s

In this forward direction, let's calculate the displacement(d1) using newton's 3rd equation of motion.

d1 = ut + ½at²

d1 = 0(3.3) + ½(13.5 × 3.3²)

d1 = 73.5075 m

Now, let's consider the motion while slowing down and our final velocity will be 0 m/s while initial velocity will now be 44.55 m/s while acceleration is 6.15 m/s².

Thus, from v = u + at, we can find the time it take for the sled to come to a stop.

Now, since it's coming to rest acceleration will be negative. Thus;

0 = 44.55 + (-6.15t)

0 = 44.55 - 6.15t

t = 44.55/6.15

t = 7.244 s

Now we want to find out how far the sled has travelled from its starting point by the time it finally comes to rest.

Thus, we'll use the equation;

v² = u² + 2as

Where s will be the second displacement which we will call d2.

Thus;

0² = 44.55² + (-2 × 6.15 × s)

0 = 1984.7025 - 12.3s

12.3s = 1984.7025

s = 1984.7025/12.3

s = 161.358

Thus, d2 = s = 161.358 m

Thus, distance sled has travelled from its starting point by the time it finally comes to rest is ;

= d1 + d2 = 73.5075 + 161.358 = 234.8655 m

4 0
3 years ago
Other questions:
  • The resistance force for this ideal pulley system is 1000 n what is the fe
    14·1 answer
  • Which of the following best characterizes the free energy change ΔG for an endothermic reaction under physiological conditions?A
    8·1 answer
  • the scientists tested a hypothesis on running in the rain performed only one controlled experiment that supported their hypothes
    5·1 answer
  • The sun emits energy in the form of electromagnetic waves produced by nuclear reactions deep in the sun's interior. Assume that
    8·1 answer
  • One example of a physical change is
    11·1 answer
  • Which materials are most thick ? Please help
    12·1 answer
  • Which idea would most likely be dangerous for a student to think while entering a lab?
    9·1 answer
  • Can you solve the issue
    12·1 answer
  • As of 2022, what is the total population of the planet?.
    7·1 answer
  • A soccer player kicks a ball at rest on the
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!