To solve this problem we will use the definition of the period in a simple pendulum, which warns that it is dependent on its length and gravity as follows:

Here,
L = Length
g = Acceleration due to gravity
We can realize that
is a constant so it is proportional to the square root of its length over its gravity,

Since the body is in constant free fall, that is, a point where gravity tends to be zero:

The value of the period will tend to infinity. This indicates that the pendulum will no longer oscillate because both the pendulum and the point to which it is attached are in free fall.
Weight = Mass * gravity
= 1470* 9.8 = 14406 N ≈ 14,400 N
Answer:
<em><u>Assuming that the vertical speed of the ball is 14 m/s</u></em> we found the given values:
a) V₀ = 23.4 m/s
b) h = 27.9 m
c) t = 0.96 s
d) t = 4.8 s
Explanation:
a) <u>Assuming that the vertical speed is 14 m/s</u> (founded in the book) the initial speed of the ball can be calculated as follows:

<u>Where:</u>
: is the final speed = 14 m/s
: is the initial speed =?
g: is the gravity = 9.81 m/s²
h: is the height = 18 m
b) The maximum height is:


c) The time can be found using the following equation:


d) The flight time is given by:

I hope it helps you!
When the roller coaster going down
step by step
you can determine it by the wavelenght and the period of the wave and the frequencey