Answer:
The angular velocity at the beginning of the interval is
.
Explanation:
Given that,
Angular acceleration 
Angular displacement 
Angular velocity 
We need to calculate the angular velocity at the beginning
Using formula of angular velocity


Where,
= angular acceleration
= angular velocity
Put the value into the formula



Hence, The angular velocity at the beginning of the interval is
.
Answer:
Explanation:
Magnets are of two major forms namely the permanent magnet and the temporary magnets. Temporary magnets magnetizes and demagnetize easily while permanent magnets does not magnetizes and demagnetize easily.
This permanents magnets are applicable in loudspeakers, generators, induction motor etc.
To increase the
The following will tend to increase the magnetic force acting on the rotor in an induction motor.
1. Increasing the strength of the bar magnet. Increase in strength of the magnet will lead to increase in the magnetic force acting on the rotor.
2. Increase in the magnetic line of force also known as the magnetic flux around the magnet will also increase the magnetic force acting on the rotor.
Hi
The answer to this question is B. Reaction