Answer:
Most cells within planarians tend to be very close to their gastrovascular cavity, in addition to their external environments. Also, planarians have the ability for oxygen and carbon dioxide to diffuse through the cells on their body walls: this makes it unnecessary for these varieties of flatworms to need a dedicated bodily system.
I think the deficiency of dedicated respiratory and circulatory systems in Planarians does not cause a problem because none of their cells are far removed from the gastrovascular cavity or from the external environment. Planarians are free-living flatworms and form the class Turbellarians in the Phylum Platyhelminthes. Flatworms have three tissue layers, that is the ectoderm, mesoderm, and endoderm.
hope this helps!!!!!....
Explanation:
Do u have choices? if one of the choices are 92 thats correct
Gravity is one reason but also it depends in the speed, if the wave is fast, it will go higher and then bend. hope i helped :D
Explanation:
B) protein channel
Lipids are composed of fatty acids which form the hydrobic tail and glycerol which forms the hydrophilic head; glycerol is a 3-Carbon alcohol which is water soluble, while the fatty acid tail is a long chain hydrocarbon (hydrogens attached to a carbon backone) with up to 36 carbons.
Their polarity or arrangement can give these non-polar macromolecules hydrophilic and hydrophobic properties. Via <em>diffusion,</em> small water molecules can move across the phospholipid bilayer acts as a semi-permeable membrane into the extracellular fluid or the cytoplasm which are both hydrophilic and contain large concentrations of polar water molecules or other water-soluble compounds. The hydrophilic heads of the bilayer are attracted to water while their water-repellent hydrophobic tails face towards each other- allowing molecules of water to diffuse across the membrane along the concentration gradient.
Transmembrane proteins are embedded within the membrane from the extracellular fluid to the cytoplasm, and are sometimes attached to glycoproteins (proteins attached to carbohydrates) which function as cell surface markers. Carrier proteins and channel proteins are the two major classes of membrane transport proteins.
- Carrier proteins (also called carriers, permeases, or transporters) bind the specific solute to be transported and undergo a series of conformational changes to transfer the bound solute across the membrane. Transport proteins spanning the plasma membrane facilitate the movement of ions and other complex, polar molecules which are typically prevented from moving across the membrane.
- Channel proteins which are pores filled with water versus enabling charged molecules to diffuse across the membrane, from regions of high concentration to regions of lower concentration. This is a passive part of facilitated diffusion
Learn more about membrane components at brainly.com/question/1971706
Learn more about plasma membrane transport at brainly.com/question/11410881
#LearnWithBrainly
Answer:
d. less than 100% of the energy captured from sunlight is transformed into potential energy in the form of a hydrogen ion gradient and then into potential energy in the form of covalent bonds
Explanation:
Photosynthesis is process utilized by plants, several bacteria and protists to convert the light energy to chemical energy. So they utilize the photosynthesis as the powerhouse for the energy production. Heterotrophs like human that cannot synthesize their own food, use this converted form of energy by autotrophs.
During the light reaction of photosynthesis the photons from light are absorbed by photosystem I and II. These photons excites the electrons which flow through the electron transport chain from higher potential to lower potential. These electrons release the energy while moving from higher potential to lower potential which is utilized by H+ pump to pump the H+ to lumen of plastids from stroma and of course not the 100% energy is utilized some of the energy dissipates. . So this process causes the accumulation of high potential H+ ions across the membrane. These H+ ions are utilized for the production of ATP by ATP synthase complex when they flow back to lower potential across the membrane through ATP synthase complex.
The ATP and NADPH produced from light reaction are utilized to combine carbon molecules during dark reaction. The covalent bond is used to combine the carbon molecules and we know that combining carbon molecules stores energy in the form of covalent bond.