Answer:
The edges or boundaries between the ecosystems and within it are the illustrating characteristics of landscapes. In a landscape, the biodiversity is affected by the composition of the landscape itself. When an area possesses boundaries or edges, which minimize the area of the habitat, it also starts to minimize the number of species, which can associate with the communities.
The multiplication of edge species can exhibit both negative and positive influences on the biodiversity of a community. On the other hand, corridors refer to the region associated with the populations of wildlife distinguished by human activities like road construction. The prime objective of designing habitat corridors is to enhance biodiversity. The corridors that have been protracted to other habitat patches can reinstate a certain degree of space and at the same time reestablish certain chances for genetic diversity.
Answer:
Trypsin cuts at lysine and arginine amino acid residues at the carboxyl end. Chymotrypsin cuts at tryosine , phenylalanine, and tryptophan amino acid residues at the carboxyl end.
Explanation:
Trypsin and chymotrypsin are known as proteolytic enzymes which are actively involved in the digestive system. They are both secreted by the pancreas and are majorly involved in the breakdown of protein in the small intestine.
Trypsin cuts at lysine and arginine amino acid residues at the carboxyl end. Chymotrypsin cuts at tryosine , phenylalanine, and tryptophan amino acid residues at the carboxyl end.
Answer:
what cnidarians you need to spell right
Answer:
The reason for the offspring to present these genotypes is that during the formation of the gametes, the alleles separate and are inherited independently, therefore they can generate several different phenotypic combinations.
Explanation:
In order for an offspring to present very different phenotypes, as shown in the question above, it is necessary that the two red griffins with blue eyes that were crossed are heterozygous. Thus it will be possible for the offspring to present a wide variety of phenotype, according to Mendel's second law.
Mendel's second law is called the Law of segregation. This law explains that the alleles (which determine the characteristics of individuals) are separated in the formation of gametes and inherited by the offspring of a cross independently, and can generate different combinations of phenotypes, when the parents of a cross are heterozygous.
Answer:
If the two organisms are heterozygous for the dominant trait.
Explanation:
For every trait, a diploid organism receives two forms of gene called ALLELE, from each parent. Allele is the variant form of a gene.
According to Mendel's law of dominance, for a particular trait, an allele is capable of masking the expression of another allele in a gene. The expressed allele is called the DOMINANT allele while the masked allele is called the RECESSIVE allele. Due to this, an organism can express a dominant trait even in a combined or heterozygous state i.e. different alleles.
When the two heterozygous organisms mate or are crossed, they undergo meiosis and their alleles are separated into GAMETES according to Mendel's law of segregation. For example; an organism with genotype (genetic make-up) Aa will produce gametes with A and a alleles.
Note that, a recessive trait can only be expressed in a homozygous state i.e. same allele. Hence, the two heterozygous organisms will produce gametes containing the recessive allele, which will likely combine to produce a recessive phenotype or trait.