The sample with the lowest AVERAGE kinetic energy is
the coolest one.
The sample with the lowest TOTAL kinetic energy depends on
not only the temperature of the samples, but also on their size,
since each molecule in the sample has kinetic energy.
Identical electron configurations : K⁺ and Cl⁻
<h3>Further explanation </h3>
In an atom, there are levels of energy in the shell and sub-shell
This energy level is expressed in the form of electron configurations.
Charging electrons in the sub-shell uses the following sequence:
<em>1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰, 4p⁶, 5s², 4d¹⁰, 5p⁶, 6s², etc. </em>
S²⁻ : [Ne] 3s²3p⁶
Cl : [Ne] 3s²3p⁵
K⁺ : 1s² 2s² 2p⁶ 3s² 3p⁶
Cl⁻ : 1s² 2s² 2p⁶ 3s²3p⁶
S :[Ne] 3s²3p⁴
Ar : [Ne] 3s²3p⁶
Cl⁻ : 1s² 2s² 2p⁶ 3s²3p⁶
K : 1s² 2s² 2p⁶ 3s² 3p⁶4s¹
3Na2O(at) + 2Al(NO3)3(aq) —> 6NaNO3(aq) + Al2O3(s)
This is a double replacement reaction and NaNO3 is aqueous because Na is an alkali metal, plus nitrate is in the solution. Both of these are soluble. Al2O3 is not soluble because it does not contain any element that is soluble and is hence the precipitate.
Hope this helped!
According to the question, the determined melting point of the compound is 112.5-113.0oC. When the solidified compound was retried, the melting point was found to be 133.6-154.5oC. This greater range higher than 112°C is caused by reusing samples leads to errors.
A pure sample is known by its sharp melting point. A pure sample does not melt over a large range. We can see this in the predetermined melting points of the pure sample(112.5-113.0oC).
However, reusing a sample introduces errors because the pure sample may become contaminated leading to a larger and higher range of melting point (133.6-154.5oC) which is far above 112°C.
Learn more: brainly.com/question/5325004