1500 * 1/5
1500 * 0.2 = 300
300 * 12 = 3600
Javier contributes $3,600 a year to his savings.
Answer:
Step-by-step explanation:
<u>Corresponding side have same ratio:</u>
- 55/121 = 5/11 (divide by 11)
- 40/88 = 5/11 (divide by 8)
- 30/66 = 5/11 (divide by 6)
The similarity ratio or the scale factor of the larger triangle to the smaller is 5/11
Answer:
17/20
Step-by-step explanation:
To find the simplest form of 0.85 you need to turn it into a fraction.
To turn it into a fraction you put 85 over 100 since 0.85 is in the hundredths place.
85/100 can be simplified to 17/20 because 85/5 is 17 and 100/5 is 20
A right triangle has one leg with unknown length, the other leg with length of 5 m, and the hypotenuse with length 13 times sqrt 5 m.
We can use the Pythagorean formula to find the other leg of the right triangle.
a²+b²=c²
Where a and b are the legs of the triangle and c is the hypotenuse.
According to the given problem,
one leg: a= 5m and hypotenuse: c=13√5 m.
So, we can plug in these values in the above equation to get the value of unknown side:b. Hence,
5²+b²=(13√5)²
25 + b² = 13²*(√5)²
25 + b² = 169* 5
25+ b² = 845
25 + b² - 25 = 845 - 25
b² = 820
b =√ 820
b = √(4*205)
b = √4 *√205
b = 2√205
b= 2* 14.32
b = 28.64
So, b= 28.6 (Rounded to one decimal place)
Hence, the exact length of the unknown leg is 2√205m or 28.6 m (approximately).
Answer:
The answer is 3093.
3093 (if that series you posted actually does stop at 1875; there were no dots after, right?)
Step-by-step explanation:
We have a finite series.
We know the first term is 48.
We know the last term is 1875.
What are the terms in between?
Since the terms of the series form a geometric sequence, all you have to do to get from one term to another is multiply by the common ratio.
The common ratio be found by choosing a term and dividing that term by it's previous term.
So 120/48=5/2 or 2.5.
The first term of the sequence is 48.
The second term of the sequence is 48(2.5)=120.
The third term of the sequence is 48(2.5)(2.5)=300.
The fourth term of the sequence is 48(2.5)(2.5)(2.5)=750.
The fifth term of the sequence is 48(2.5)(2.5)(2.5)(2.5)=1875.
So we are done because 1875 was the last term.
This just becomes a simple addition problem of:
48+120+300+750+1875
168 + 1050 +1875
1218 +1875
3093