The open circle means the inequality will be greater than or equal to (≥) or less than or equal to (≤).
A closed circle means the inequality will be greater than (>) or less than (<)
An arrow pointing right to increasingly positive values means the inequality is getting greater (> or ≥)
A narrowing pointing left to increasingly negative values means the inequality is getting lesser (< or ≤)
So for this graph with an open circle and rightward pointing arrow, “x” will be some number on the number line greater than the first point of -38:
x > -38
Answer:
see below (I hope this helps!)
Step-by-step explanation:
41. √20 = √4 * 5 = √4 * √5 = 2√5
43. The sum of interior angles in a triangle is 180°, therefore, x = 180 - (75 + 64) = 41°.
45. 15 + 5(2x - 3) = 15 + 5(2x) + 5(-3) = 15 + 10x - 15 = 10x
47. Complementary angles have a sum of 90°, therefore, x = 90 - 48 = 42°.
Make a change of coordinates:


The Jacobian for this transformation is

and has a determinant of

Note that we need to use the Jacobian in the other direction; that is, we've computed

but we need the Jacobian determinant for the reverse transformation (from

to

. To do this, notice that

we need to take the reciprocal of the Jacobian above.
The integral then changes to

Answer:
espero sirva qwq
Step-by-step explanation:
4= 0.56666666666
5=1.66666666667
6=1.375
7=1.425
8=0.92857142857
9=1.666666667
10=1.44444444444
11=0.825
Let <em>a</em> and <em>b</em> be the zeroes of <em>x</em>² + <em>kx</em> + 12 such that |<em>a</em> - <em>b</em>| = 1.
By the factor theorem, we can write the quadratic in terms of its zeroes as
<em>x</em>² + <em>kx</em> + 12 = (<em>x</em> - <em>a</em>) (<em>x</em> - <em>b</em>)
Expand the right side and equate the coefficients:
<em>x</em>² + <em>kx</em> + 12 = <em>x</em>² - (<em>a</em> + <em>b</em>) <em>x</em> + <em>ab</em>
Then
<em>a</em> + <em>b</em> = -<em>k</em>
<em>ab</em> = 12
The condition that |<em>a</em> - <em>b</em>| = 1 has two cases, so without loss of generality assume <em>a</em> > <em>b</em>, so that |<em>a</em> - <em>b</em>| = <em>a</em> - <em>b</em>.
Then if <em>a</em> - <em>b</em> = 1, we get <em>b</em> = <em>a</em> - 1. Substitute this into the equations above and solve for <em>k</em> :
<em>a</em> + (<em>a</em> - 1) = -<em>k</em> → 2<em>a</em> = 1 - <em>k</em> → <em>a</em> = (1 - <em>k</em>)/2
<em>a</em> (<em>a</em> - 1) = 12 → (1 - <em>k</em>)/2 • ((1 - <em>k</em>)/2 - 1) = 12
→ (1 - <em>k</em>)²/4 - (1 - <em>k</em>)/2 = 12
→ (1 - <em>k</em>)² - 2 (1 - <em>k</em>) = 48
→ (1 - 2<em>k</em> + <em>k</em>²) - 2 (1 - <em>k</em>) = 48
→ <em>k</em>² - 1 = 48
→ <em>k</em>² = 49
→ <em>k</em> = ± √(49) = ±7