Answer:
= 26.94 m/s
Explanation:
given,
angle of inclination = 30°
mass of the sleigh = 200 kg
coefficient of kinetic friction = 0.2
height of inclination = 10 m
pull force be = 5000 N
now,.
T - f_s - mg sin \theta = m aT−f
s
−mgsinθ=ma
T - \mu N - mg sin \theta = m aT−μN−mgsinθ=ma
T - \mu mg - mg sin \theta = m aT−μmg−mgsinθ=ma
a = \dfrac{T}{m} - \mu g - g sin \thetaa=
m
T
−μg−gsinθ
a = \dfrac{5000}{200} - \0.2\times 9.8 - 9.8 \times sin 30^0a=
200
5000
−\0.2×9.8−9.8×sin30
0
a = 18.14\ m/s^2a=18.14 m/s
2
L = \dfrac{10}{sin 30}L=
sin30
10
L = 20 m
v² = u² + 2 as
v² = 0 + 2 x 18.14 x 20
v = 26.94 m/s
Answer: Potential energy is real and is stored within matter, though a force must be applied to an object in order for it to store potential energy.
Explanation:
I would assume gamma rays because they have the fastest moving partials out of all of them
At a constant speed of 5.00 m/s, the speed at which the poodle completes a full revolution is

so that its period is
(where 1 revolution corresponds exactly to 360 degrees). We use this to determine how much of the circular path the poodle traverses in each given time interval with duration
. Denote by
the angle between the velocity vectors (same as the angle subtended by the arc the poodle traverses), then



We can then compute the magnitude of the velocity vector differences
for each time interval by using the law of cosines:


and in turn we find the magnitude of the average acceleration vectors to be

So that takes care of parts A, C, and E. Unfortunately, without knowing the poodle's starting position, it's impossible to tell precisely in what directions each average acceleration vector points.
Answer:
Playing hockey, driving a car, and even simply taking a walk are all everyday examples of Newton's laws of motion.