Answer:
The plane would need to travel at least
(
.)
The
runway should be sufficient.
Explanation:
Convert unit of the the take-off velocity of this plane to
:
.
Initial velocity of the plane:
.
Take-off velocity of the plane
.
Let
denote the distance that the plane travelled along the runway. Since acceleration is constant but unknown, make use of the SUVAT equation
.
Notice that this equation does not require the value of acceleration. Rather, this equation make use of the fact that the distance travelled (under constant acceleration) is equal to duration
times average velocity
.
The distance that the plane need to cover would be:
.
Answer:
<h2>23.33 kg </h2>
Explanation:
The mass of the object can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>23.33 kg</h3>
Hope this helps you
As per the question Bob drops the bag full with feathers from the top of the building.
The mass of the bag(m)= 1.0 lb
Let the air resistance is neglected.As the bag is under free fall ,hence the only force that acts on the bag is the force of gravity which is in vertical downward direction.
Here the acceleration produced on bag due to the free fall will be nothing else except the acceleration due to gravity i.e g =9.8 m/s^2
Here we are asked to calculate the distance travelled by the bag at the instant 1.5 s
Hence time t= 1.5 s
From equation of kinematics we know that -
S=ut + 0.5at^2 [ here S is the distance travelled]
For motion under free fall initial velocity (u)=0.
Hence S= 0×1.5+{0.5×(-9.8)×(1.5)^2}
⇒ -S =0-11.025 m
⇒ S= 11.025 m
=11 m
Here the negative sign is taken only due to the vertical downward motion of the body .we may take is positive depending on our frame of reference .
Hence the correct option is B.
The correct answer is Option (C) distance and time
Explanation:
Average speed of any object is defined as the total distance that object travels over the time it takes to travel that distance. In other words, average speed is the total distance divided by the elapsed time.

Therefore, as you can see in the above equation, the two measurements that are essential for the calculation of the average speed are the (total) distance and the (elapsed) time.
Hence, the correct option is C.