Total paintings = 6
Number of different places for each painting = 6
Total number of ways she could hang all the painting = 6 × 6 = 36
Answer:yes
Step-by-step explanation:Bc I am right and right
Answer:78% countries
Step-by-step explanation:
Answer:
1. 15x^7y^2 + 4x^3 => x^3(15x^4y^2 + 4)
2. 15x^7y^2 + 3x => 3x(5x^6y^2 + 1)
3. 15x^7y^2 + 6xy => 3xy(5x^6y + 2)
4. 15x^7 + 10y^2 => 5(3x^7 + 2y^2)
Step-by-step explanation:
To obtain the answer to the question, first let us factorise each expression. This is illustrated below:
1. 15x^7y^2 + 4x^3
Common factor is x^3, therefore the expression is written as:
x^3(15x^4y^2 + 4)
2. 15x^7y^2 + 3x
Common factor is 3x, therefore the expression is written as:
3x(5x^6y^2 + 1)
3. 15x^7y^2 + 6xy
Common factor is 3xy, therefore the expression is written as:
3xy(5x^6y + 2)
4. 15x^7 + 10y^2
Common factor is 5, therefore the expression can be written as:
5(3x^7 + 2y^2)
im pretty sure true because they do not intersect and are not parallel :)