1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olganol [36]
2 years ago
11

Solve the following system. y = (1/2)x 2 + 2x - 1 and 3x - y = 1 The solutions are ( )and ( ) (remember to include the commas)

Mathematics
2 answers:
frozen [14]2 years ago
8 0
\begin{cases}y=\dfrac{1}{2}x+2x-1\\3x-y=1\end{cases}\\\\\\
\begin{cases}y=\dfrac{5}{2}x-1\3x-y=1\end{cases}\\\\\\
3x-\left(\dfrac{5}{2}x-1\right)=1\\\\3x-\dfrac{5}{2}x+1=1\\\\
3x-\dfrac{5}{2}x=0\\\\\dfrac{x}{2}=0\\\\x=0\\\\3\times0-y=1\\0-y=1\\y=-1\\\\\boxed{(x,y)=(0,-1)}

<span>The solutions are (0) and (-1)</span>
notsponge [240]2 years ago
5 0

Answer:

The points satisfying the solution is (2,5) and (0,-1).

Step-by-step explanation:

Given : y=\frac{1}{2}x^2+2x-1 and 3x-y=1

To solve : The given system of equations ?

Solution :

Let,

y=\frac{1}{2}x^2+2x-1  .....[1]

3x-y=1  ......[2]

Now, using substitution method,

Substitute y from [1] into [2]

3x-(\frac{1}{2}x^2+2x-1)=1

3x-\frac{1}{2}x^2-2x+1=1

x-\frac{1}{2}x^2=0

2-x=0

x=2

Now, substitute the value of x into [2]

3(2)-y=1

6-y=1

y=5

Therefore, One of the solution is (2,5)

Similar way we can substitute [2] into [1] we get another solution (0,-1).

So, for the solutions we can also graph the equations and the intersecting points are the solution of the graph.

Refer the attached figure below.

The points satisfying the solution is (2,5) and (0,-1).

You might be interested in
Which one is right triangle angle <br>a. 45, 55 and 35<br>b. 52, 48 and 20​
Gemiola [76]
<h2>option b. 52, 48 and 20</h2>

Step-by-step explanation:

<u>let's solve:-</u>

  • To test whether given this triangle is right triangle or not, we can use the Pythagorean Theorem .

soo

Pythagorean Theorem=

\bold \green{(leg1)^{2} +(leg2)^{2} =(hypotenuse)^{2} }

<h2>_____________________________________</h2>

Here:-

\bold \blue{leg \: 1 = 48} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \bold  \blue{ leg2 = 20} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \bold\blue{hypotenuse = 52}

Putting values:-

{48}^{2}  +  {20}^{2}  = {52}^{2}   \:  \:  \:  \:  \:  \: \\  \\ 2304 + 400 = 2704 \\  \\ 2704 = 2704 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

<h2>_____________________________________</h2>
4 0
2 years ago
For the following questions find the other half of the fraction.
valentina_108 [34]

Answer:

<em>1</em><em>)</em><em> </em><em>3</em><em>/</em><em>5</em><em>=</em><em> </em><em>6</em><em>/</em><em>1</em><em>0</em>

<em>2</em><em>)</em><em> </em><em>3</em><em>/</em><em>6</em><em>=</em><em> </em><em>6</em><em>/</em><em>1</em><em>2</em>

<em>3</em><em>)</em><em> </em><em>4</em><em>/</em><em>1</em><em>0</em><em>=</em><em> </em><em>2</em><em>/</em><em>5</em>

<em>4</em><em>)</em><em> </em><em>3</em><em>/</em><em>4</em><em>=</em><em> </em><em>6</em><em>/</em><em>8</em>

<em>5</em><em>)</em><em> </em><em>5</em><em>/</em><em>1</em><em>0</em><em> </em><em>=</em><em> </em><em>1</em><em>/</em><em>2</em>

<em>6</em><em>)</em><em> </em><em>4</em><em>/</em><em>6</em><em>=</em><em> </em><em>8</em><em>/</em><em>1</em><em>2</em>

<em>7</em><em>)</em><em> </em><em>5</em><em>/</em><em>5</em><em>=</em><em> </em><em>1</em><em>0</em><em>/</em><em>1</em><em>0</em>

<em>8</em><em>)</em><em> </em><em>1</em><em>/</em><em>2</em><em>=</em><em> </em><em>6</em><em>/</em><em>1</em><em>2</em>

4 0
2 years ago
Find the angle between the given vectors. Round your answer, in degrees, to two decimal places. u=⟨2,−6⟩u=⟨2,−6⟩, v=⟨4,−7⟩
NISA [10]

Answer:

\theta = 108.29

Step-by-step explanation:

Given

u =

v =

Required:

Calculate the angle between u and v

The angle \theta is calculated as thus:

cos\theta = \frac{u.v}{|u|.|v|}

For a vector

A =

A = a * b

cos\theta = \frac{u.v}{|u|.|v|} becomes

cos\theta = \frac{.}{|u|.|v|}

cos\theta = \frac{2*6+4*-7}{|u|.|v|}

cos\theta = \frac{12-28}{|u|.|v|}

cos\theta = \frac{-16}{|u|.|v|}

For a vector

A =

|A| = \sqrt{a^2 + b^2}

So;

|u| = \sqrt{2^2 + 6^2}

|u| = \sqrt{4 + 36}

|u| = \sqrt{40}

|v| = \sqrt{4^2+(-7)^2}

|v| = \sqrt{16+49}

|v| = \sqrt{65}

So:

cos\theta = \frac{-16}{|u|.|v|}

cos\theta = \frac{-16}{\sqrt{40}*\sqrt{65}}

cos\theta = \frac{-16}{\sqrt{2600}}

cos\theta = \frac{-16}{\sqrt{100*26}}

cos\theta = \frac{-16}{10\sqrt{26}}

cos\theta = \frac{-8}{5\sqrt{26}}

Take arccos of both sides

\theta = cos^{-1}(\frac{-8}{5\sqrt{26}})

\theta = cos^{-1}(\frac{-8}{5 * 5.0990})

\theta = cos^{-1}(\frac{-8}{25.495})

\theta = cos^{-1}(-0.31378701706)

\theta = 108.288386087

<em></em>\theta = 108.29<em> (approximated)</em>

4 0
2 years ago
What is the square root of 9 2/5 cubed?
taurus [48]

Answer:

28.8

Step-by-step explanation:

7 0
2 years ago
Answer ASAP:
Irina-Kira [14]

Answer:

To order fractions from least to greatest, start by finding the lowest common denominator for all of the fractions. Next, convert each of the fractions by dividing the lowest common denominator by the denominator and then multiplying the top and bottom of the fraction by your answer.

Step-by-step explanation:

Hope this helps ❤️

5 0
3 years ago
Other questions:
  • What is 6050.287 rounded to the nearest tenth
    14·1 answer
  • Angle PSR measures 99°.
    5·1 answer
  • A quadrilateral has angles measuring 105°,80°and 45°.What is the measure of the fouth angle?​
    12·1 answer
  • Write the equation of a line with a slope of -1 and a y-intercept of 5. Do not use spaces
    12·1 answer
  • 2/3=1.2/x solve for x
    6·1 answer
  • What is the missing number?
    8·2 answers
  • The square of a number ending with 9 will end with?<br>(a) 1 (b) 3 (c) 6 (d) 9​
    5·2 answers
  • A rectangular sheet of paper is 25/2cm long and 32/3 cm wide. Find its perimeter. *​
    11·2 answers
  • The first sequence rule is multiply by 2 starting from 6. The second sequence rule is add 4 starting from 16. What is the first
    10·2 answers
  • Find the perimeter and area of the figure. Round to the nearest tenth if necessary.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!