The ship floats in water due to the buoyancy Fb that is given by the equation:
Fb=ρgV, where ρ is the density of the liquid, g=9.81 m/s² is the acceleration of the force of gravity and V is volume of the displaced liquid.
The density of fresh water is ρ₁=1000 kg/m³.
The density of salt water is in average ρ₂=1025 kg/m³.
To compare the volumes of liquids that are displaced by the ship we can take the ratio of buoyancy of salt water Fb₂ and the buoyancy of fresh water Fb₁.
The gravity force of the ship Fg=mg, where m is the mass of the ship and g=9.81 m/s², is equal to the force of buoyancy Fb₁ and Fb₂ because the mass of the ship doesn't change:
Fg=Fb₁ and Fg=Fb₂. This means Fb₁=Fb₂.
Now we can write:
Fb₂/Fb₁=(ρ₂gV₂)/(ρ₁gV₁), since Fb₁=Fb₂, they cancel out:
1/1=1=(ρ₂gV₂)/(ρ₁gV₁), g also cancels out:
(ρ₂V₂)/(ρ₁V₁)=1, now we can input ρ₁=1000 kg/m³ and ρ₂=1025 kg/m³
(1025V₂)/(1000V₁)=1
1.025(V₂/V₁)=1
V₂/V₁=1/1.025=0.9756, we multiply by V₁
V₂=0.9756V₁
Volume of salt water V₂ displaced by the ship is smaller than the volume of sweet water V₁ because the force of buoyancy of salt water is greater than the force of fresh water because salt water is more dense than fresh water.
Explanation:
Show that the motion of a mass attached to the end of a spring is SHM
Consider a mass "m" attached to the end of an elastic spring. The other end of the spring is fixed
at the a firm support as shown in figure "a". The whole system is placed on a smooth horizontal surface.
If we displace the mass 'm' from its mean position 'O' to point "a" by applying an external force, it is displaced by '+x' to its right, there will be elastic restring force on the mass equal to F in the left side which is applied by the spring.
According to "Hook's Law
F = - Kx ---- (1)
Negative sign indicates that the elastic restoring force is opposite to the displacement.
Where K= Spring Constant
If we release mass 'm' at point 'a', it moves forward to ' O'. At point ' O' it will not stop but moves forward towards point "b" due to inertia and covers the same displacement -x. At point 'b' once again elastic restoring force 'F' acts upon it but now in the right side. In this way it continues its motion
from a to b and then b to a.
According to Newton's 2nd law of motion, force 'F' produces acceleration 'a' in the body which is given by
F = ma ---- (2)
Comparing equation (1) & (2)
ma = -kx
Here k/m is constant term, therefore ,
a = - (Constant)x
or
a a -x
This relation indicates that the acceleration of body attached to the end elastic spring is directly proportional to its displacement. Therefore its motion is Simple Harmonic Motion.
6.022*10^23 atoms/mole of reactant
(this is chemistry not physics)
Answer:
C. Add all the force vectors
Explanation:
The net force acting on an object is the vector sum of all the forces on the object.
Remember, Newton's first law tells us a body at rest will remain at rest or that in uniform motion will continue in motion unless acted by unbalanced forces.These unbalanced forces act in all direction towards the body thus to get the net force you require a summation of all these force with respect to their magnitudes and directions.
For example a force of 3N towards the East direction acting on a body and another force of 2N towards the West direction on the same body will generate a net force of 1N towards the East direction.