A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs.
Read more on Brainly.com -
brainly.com/question/1581851#readmore
The acceleration that Andrew experience during his ride is 3.6m/s²
The formula for calculating centripetal acceleration is expressed as:
a = v²/r
v is the speed
r is the radius
Given the following expression
v = 6m/s
r = 10m
Substitute the given parameters into the formula
a = 6²/10
a = 36/10
a = 3.6m/s²
Hence the acceleration that Andrew experience during his ride is 3.6m/s²
Learn more here: brainly.com/question/1268866
Answer:
The work done on the canister by the 5.0 N force during this time is
54.06 Joules.
Explanation:
Let the initial kinetic energy of the canister be
KE₁ =
=
= 19.44 J in the x direction
Let the the final kinetic energy of the canister be
KE₂ =
=
= 73.5 J in the y direction
Therefore from the Newton's first law of motion, the effect of the force is the change of momentum and the difference in energy between the initial and the final
= 73.5 J - 19.44 J = 54.06 J
Answer
(C).
When there is an angle between the two directions, the cosine of the angle must be considered.
Step by step Solution
The work done by a force is defined as the product of the force and the distance traveled in the direction of motion.
The first answer "Only the component of the force perpendicular to the motion is used to calculate the work" is wrong because, the force perpendicular to motion does no work.
The second choice "If the force acts in the same direction as the motion, then no work is done" is wrong because the work in the direction of the force is
.
Fourth answer "A force at a right angle to the motion requires the use of the sine of the angle" is wrong because the
meaning that there is no work done in the direction perpendicular to the motion.
The third answer" When there is an angle between the two directions, the cosine of the angle must be considered." is correct because the work is calculated using the force in the direction of the motion. The magnitude of this force is 