Answer:
the answer to the question is indeed B
Answer:
t=67.7s
Explanation:
From this question we know that:
Vo = 6m/s
a = 1.8 m/s2
D = 1500m
And we also know that:
Replacing the known values:
Solving for t we get 2 possible answers:
t1 = -44.3s and t2 = 67.7s Since negative time represents an instant before the beginning of the movement, t1 is discarded. So, the final answer is:
t = 67.7s
Answer:
0.911 atm
Explanation:
In this problem, there is no change in volume of the gas, since the container is sealed.
Therefore, we can apply Gay-Lussac's law, which states that:
"For a fixed mass of an ideal gas kept at constant volume, the pressure of the gas is proportional to its absolute temperature"
Mathematically:

where
p is the gas pressure
T is the absolute temperature
For a gas undergoing a transformation, the law can be rewritten as:

where in this problem:
is the initial pressure of the gas
is the initial absolute temperature of the gas
is the final temperature of the gas
Solving for p2, we find the final pressure of the gas:

Here mass of the iron pan is given as 1 kg
now let say its specific heat capacity is given as "s"
also its temperature rise is given from 20 degree C to 250 degree C
so heat required to change its temperature will be given as



now if we give same amount of heat to another pan of greater specific heat
so let say the specific heat of another pan is s'
now the increase in temperature of another pan will be given as


now we have

now as we know that s' is more than s so the ratio of s and s' will be less than 1
And hence here we can say that change in temperature of second pan will be less than 230 degree C which shows that final temperature of second pan will reach to lower temperature
So correct answer is
<u>A) The second pan would reach a lower temperature.</u>