Hello!
First of all, for our first scenario, the variation or spread of a data set is represented by the range. You subtract the largest and smallest number in the data set to find how much is in between.
Next, the mode is the number of piece of data that shows up the most in the data set, or the most common piece. Therefore, the most popular color is the mode.
As you can see, number 3 clearly says mean in the problem. This is the average cost.
The median is the middle number. Basically, it splits the data in half. If half of the students are 15 or higher, the middle age is 15, therefore, the median is 15.
Therefore, our answers are below.
2. Mode
3. Mean
1. Range
4. Median
I hope this helps!
Answer:
Subtraction is an arithmetic operation that represents the operation of removing objects from a collection. The result of a subtraction is called a difference. Subtraction is signified by the minus sign (−). For example, in the adjacent picture, there are 5 − 2 apples—meaning 5 apples with 2 taken away, which is a total of 3 apples. Therefore, the difference of 5 and 2 is 3, that is, 5 − 2 = 3. Subtraction represents removing or decreasing physical and abstract quantities using different kinds of objects including negative numbers, fractions, irrational numbers, vectors, decimals, functions, and matrices.
Subtraction follows several important patterns. It is anticommutative, meaning that changing the order changes the sign of the answer. It is also not associative, meaning that when one subtracts more than two numbers, the order in which subtraction is performed matters. Because 0 is the additive identity, subtraction of it does not change a number. Subtraction also obeys predictable rules concerning related operations such as addition and multiplication. All of these rules can be proven, starting with the subtraction of integers and generalizing up through the real numbers and beyond. General binary operations that continue these patterns are studied in abstract algebra.
Performing subtraction is one of the simplest numerical tasks. Subtraction of very small numbers is accessible to young children. In primary education, students are taught to subtract numbers in the decimal system, starting with single digits and progressively tackling more difficult problems.
In advanced algebra and in computer algebra, an expression involving subtraction like A − B is generally treated as a shorthand notation for the addition A + (−B). Thus, A − B contains two terms, namely A and −B. This allows an easier use of associativity and commutativity.
The required steps are explained below to convert the quadratic function into a perfect square.
<h3>What is the parabola?</h3>
It's the locus of a moving point that keeps the same distance between a stationary point and a specified line. The focus is a non-movable point, while the directrix is a non-movable line.
Let the quadratic function be y = ax² + bx + c.
The first step is to take common the coefficient of x². We have

Add and subtract the half of the square the coefficient of x,

Then we have

These are the required step to get the perfect square of the quadratic function.
More about the parabola link is given below.
brainly.com/question/8495504
#SPJ1
<u>Step-by-step explanation:</u>
transform the parent graph of f(x) = ln x into f(x) = - ln (x - 4) by shifting the parent graph 4 units to the right and reflecting over the x-axis
(???, 0): 0 = - ln (x - 4)

0 = ln (x - 4)

1 = x - 4
<u> +4 </u> <u> +4 </u>
5 = x
(5, 0)
(???, 1): 1 = - ln (x - 4)

1 = ln (x - 4)

e = x - 4
<u> +4 </u> <u> +4 </u>
e + 4 = x
6.72 = x
(6.72, 1)
Domain: x - 4 > 0
<u> +4 </u> <u>+4 </u>
x > 4
(4, ∞)
Vertical asymptotes: there are no vertical asymptotes for the parent function and the transformation did not alter that
No vertical asymptotes
*************************************************************************
transform the parent graph of f(x) = 3ˣ into f(x) = - 3ˣ⁺⁵ by shifting the parent graph 5 units to the left and reflecting over the x-axis
Domain: there is no restriction on x so domain is all real number
(-∞, ∞)
Range: there is a horizontal asymptote for the parent graph of y = 0 with range of y > 0. the transformation is a reflection over the x-axis so the horizontal asymptote is the same (y = 0) but the range changed to y < 0.
(-∞, 0)
Y-intercept is when x = 0:
f(x) = - 3ˣ⁺⁵
= - 3⁰⁺⁵
= - 3⁵
= -243
Horizontal Asymptote: y = 0 <em>(explanation above)</em>
100x 0.18 as it equals 18 when you multiply it