Answer:
6
Step-by-step explanation:
Find a number that, ehn you square it, it will be equal to 36. The number is 6.
That means q=6
F you divide 249 by 32, you get 7.78125.
Answer:
V = πr²h
Step-by-step explanation:
The formula for the volume of a cylinder is ...
V = πr²h
where V is the volume, r is the radius, and h is the height of the cylinder.
_____
<em>Comment on the formula</em>
This is a specific version of the formula for any sort of "prism" with parallel bases and a uniform cross section (parallel to the bases). The volume of such a figure is computed as ...
V = Bh
where B is the area of the base and h is the perpendicular distance between the parallel bases. Here, the base is a circle, so has area formula ...
B = πr²
Filling this into the volume formula gives ...
V = πr²h . . . . . as above
Area=legnth times width=31
the frame must go around the frame with equal legnth, x
so
the total area (meaning the frame +picture) is 5+x by 6+x
31=(5+x)(6+x)
expand
31=30+11x+x^2
minus 31 both sides
0=-1+11x+x^2
x^2+11x-1=0
answer is third one
Answer:
<em>option</em><em> </em><em>c </em><em>is </em><em>correct</em><em>,</em>
<em>as </em><em>they </em><em>are </em><em>correspondence</em><em> </em><em>angles </em><em>their </em><em>values </em><em>are </em><em>same </em><em>so,</em>
<em>x </em><em>+</em><em> </em><em>2</em><em>5</em><em>°</em><em> </em><em>=</em><em> </em><em>5</em><em>5</em><em>°</em>
<em>→</em><em> </em><em>x </em><em>=</em><em> </em><em>5</em><em>5</em><em>°</em><em> </em><em>-</em><em> </em><em>2</em><em>5</em><em>°</em>
<em>→</em><em> </em><em>x </em><em>=</em><em> </em><em>3</em><em>0</em><em>°</em><em> </em><em>ans</em>
<em><u>hope </u></em><em><u>this</u></em><em><u> answer</u></em><em><u> helps</u></em><em><u> you</u></em><em><u> dear</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>take </u></em><em><u>care</u></em><em><u> and</u></em><em><u> may</u></em><em><u> u</u></em><em><u> have</u></em><em><u> a</u></em><em><u> great</u></em><em><u> day</u></em><em><u> ahead</u></em><em><u>!</u></em>