1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nirvana33 [79]
3 years ago
13

You should check your battery ___________.

Physics
2 answers:
NNADVOKAT [17]3 years ago
8 0

<u>The battery should be checked </u><u>every six month</u><u> to ensure that it is working properly.</u>

Explanation:

The battery is the power source for the car as it provides power for several functions that are going in the car. The battery used in a car is always in use whenever the car is driven.

The battery used in a car should be checked for any malfunctioning as it may cause harm to it. The battery may be dead earlier than its life if it is not been taken care at regular intervals.

So, in order to keep the battery of the car working properly, it should be ensured that the battery is checked every five-six month or at least twice in a year. This way, if there is any malfunctioning in any part of it, it can be detected and can be made correct in appropriate time.

Thus, <u>The battery should be checked </u><u>every six month</u><u> to ensure that it is working properly.</u>

<u />

Learn More:

1. Compare the types of friction brainly.com/question/1800116

2. Fossil which is formed when the outline of original organism is formed brainly.com/question/2856442

3. Why does the refraction of light takes place brainly.com/question/3095091

Answer Details:

Grade: Middle School

Subject: Physics

Chapter: Battery

Keywords:

Every six month, every week, car, battery, malfunctioning, detected, appropriate, power source, driving.

podryga [215]3 years ago
5 0

One should check the battery every week.

A battery if not maintained properly can cause it to die earlier or get damaged. The reasons why should the battery be checked regularly is that due to improper management of the battery and also the weather conditions, the battery usually gets corroded easily and the battery won't be able to work properly.

The connections must be checked properly so that the battery gets charged properly and should not die while driving.

You might be interested in
The earth____ around the sun because the earth___ we have night and day
Harrizon [31]

Answer:

The Earth Revolves around the sun because the Earth Tilts<u>,</u> we have night and day.

Explanation:

Hope this helps! <3

4 0
3 years ago
The resistance between 2 points in an electrical circuit is 1.1 Ω. What additional resistance
valentinak56 [21]

Answer:

the new resister is 11 ohms.

Explanation:

Set it  up like this.

1/x + 1/1.1 = 1                    Subtract 1/1.1 from both sides

1/x = 1 - 1/1.1

1 - 1/1.1 = 1/11

1/x = 1/11                          Cross multiply

11 = x

If 1/11 bothers you, you could do it it another way.

1 - 1/1.1 = (1.1 - 1 ) / 1.1 = 0.1 / 1.1  Multiply top and bottom by 10

0.1*10/(1.1 * 10 ) = 1 / 11

5 0
3 years ago
ome metal oxides can be decomposed to the metal and oxygen under reasonable conditions. 2 Ag2O(s) → 4 Ag(s) + O2(g) Thermodynami
yuradex [85]

Answer : The values of \Delta H^o,\Delta S^o\text{ and }\Delta G^o are 62.2kJ,132.67J/K\text{ and }22.66kJ respectively.

Explanation :

The given balanced chemical reaction is,

2Ag_2O(s)\rightarrow 4Ag(s)+O_2(g)

First we have to calculate the enthalpy of reaction (\Delta H^o).

\Delta H^o=H_f_{product}-H_f_{product}

\Delta H^o=[n_{Ag}\times \Delta H_f^0_{(Ag)}+n_{O_2}\times \Delta H_f^0_{(O_2)}]-[n_{Ag_2O}\times \Delta H_f^0_{(Ag_2O)}]

where,

\Delta H^o = enthalpy of reaction = ?

n = number of moles

\Delta H_f^0 = standard enthalpy of formation

Now put all the given values in this expression, we get:

\Delta H^o=[4mole\times (0kJ/mol)+1mole\times (0kJ/mol)}]-[2mole\times (-31.1kJ/mol)]

\Delta H^o=62.2kJ=62200J

conversion used : (1 kJ = 1000 J)

Now we have to calculate the entropy of reaction (\Delta S^o).

\Delta S^o=S_f_{product}-S_f_{product}

\Delta S^o=[n_{Ag}\times \Delta S_f^0_{(Ag)}+n_{O_2}\times \Delta S_f^0_{(O_2)}]-[n_{Ag_2O}\times \Delta S_f^0_{(Ag_2O)}]

where,

\Delta S^o = entropy of reaction = ?

n = number of moles

\Delta S_f^0 = standard entropy of formation

Now put all the given values in this expression, we get:

\Delta S^o=[4mole\times (42.55J/K.mole)+1mole\times (205.07J/K.mole)}]-[2mole\times (121.3J/K.mole)]

\Delta S^o=132.67J/K

Now we have to calculate the Gibbs free energy of reaction (\Delta G^o).

As we know that,

\Delta G^o=\Delta H^o-T\Delta S^o

At room temperature, the temperature is 298 K.

\Delta G^o=(62200J)-(298K\times 132.67J/K)

\Delta G^o=22664.34J=22.66kJ

Therefore, the values of \Delta H^o,\Delta S^o\text{ and }\Delta G^o are 62.2kJ,132.67J/K\text{ and }22.66kJ respectively.

6 0
3 years ago
(a) A load of coal is dropped (straight down) from a bunker into a railroad hopper car of inertia 3.0 × 104 kg coasting at 0.50
Firlakuza [10]

Answer:

a) m=20000Kg

b) v=0.214m/s

Explanation:

We will separate the problem in 3 parts, part A when there were no coals on the car, part B when there is 1 coal on the car and part C when there are 2 coals on the car. Inertia is the mass in this case.

For each part, and since the coals are thrown vertically, the horizontal linear momentum p=mv must be conserved, that is, p=m_Av_A=m_Bv_B=m_Cv_C, were each velocity refers to the one of the car (with the eventual coals on it) for each part, and each mass the mass of the car (with the eventual coals on it) also for each part. We will write the mass of the hopper car as m_h, and the mass of the first and second coals as m_1 and m_2 respectively

We start with the transition between parts A and B, so we have:

m_Av_A=m_Bv_B

Which means

m_hv_A=(m_h+m_1)v_B

And since we want the mass of the first coal thrown (m_1) we do:

m_hv_A=m_hv_B+m_1v_B

m_hv_A-m_hv_B=m_1v_B

m_1=\frac{m_hv_A-m_hv_B}{v_B}=\frac{m_h(v_A-v_B)}{v_B}

Substituting values we obtain

m_1=\frac{(3\times10^4Kg)(0.5m/s-0.3m/s)}{0.3m/s}=20000Kg=2\times10^4Kg

For the transition between parts B and C, we can write:

m_Bv_B=m_Cv_C

Which means

(m_h+m_1)v_B=(m_h+m_1+m_2)v_C

Since we want the new final speed of the car (v_C) we do:

v_C=\frac{(m_h+m_1)v_B}{(m_h+m_1+m_2)}

Substituting values we obtain

v_C=\frac{(3\times10^4Kg+2\times10^4Kg)(0.3m/s)}{(3\times10^4Kg+2\times10^4Kg+2\times10^4Kg)}=0.214m/s

5 0
3 years ago
F = 2.0*10^20 N,
natka813 [3]

F=\dfrac{Gm_1m_2}{r^2}

With the given values of F,G,m_1,r, we have

2.0\times10^{20}\,\mathrm N=\dfrac{\left(6.67\times10^{-11}\,\frac{\mathrm{Nm}^2}{\mathrm{kg}^2}\right)\left(5.98\times10^{24}\,\mathrm{kg}\right)m_2}{\left(3.8\times10^8\,\mathrm m\right)^2}

Try dealing with the powers of 10 first: On the right, we have

\dfrac{10^{-11}\times10^{24}}{(10^8)^2}=\dfrac{10^{24-11}}{10^{16}}=10^{-3}

Meanwhile, the other values on the right reduce to

\dfrac{6.67\times5.98}{3.8^2}\approx2.76

Then taking units into account, we end up with the equation

2.0\times10^{20}\,\mathrm N=\left(2.76\times10^{-3}\,\dfrac{\mathrm N}{\mathrm{kg}}\right)m_2

Now we solve for m_2:

m_2=\dfrac{2.0\times10^{20}\,\mathrm N}{2.76\times10^{-3}\,\frac{\mathrm N}{\mathrm{kg}}}\approx0.725\times10^{20-(-3)}\,\mathrm{kg}

m_2=7.25\times10^{22}\,\mathrm{kg}

or, if taking significant digits into account,

m_2=7.3\times10^{22}\,\mathrm{kg}

5 0
3 years ago
Other questions:
  • An ice cube of mass 50.0 g can slide without friction up and down a 25.0 degree slope. The ice cube is pressed against a spring
    15·2 answers
  • A lead ball has a mass of 55.0 grams and a density of 11.4 g/cm3. what is the volume of the ball?
    15·2 answers
  • How do you find the number of neutrons
    10·1 answer
  • A bicycle has wheels of 0.70 m diameter. The bicyclist accelerates from rest with constant acceleration to 22 km/h in 10.8 s. Wh
    5·1 answer
  • The orbit of Halley's Comet around the Sun is a long thin ellipse. At its aphelion (point farthest from the Sun), the comet is 5
    12·1 answer
  • The __________ is the layer of the atmosphere where satellites and the space shuttle orbit the Earth.
    5·2 answers
  • A 250 kg flatcar 25 m long is moving with a speed of 3.0 m/s along horizontal frictionless rails. A 61 kg worker starts walking
    8·1 answer
  • Can light be reflected and refracted at the same time?
    10·1 answer
  • Two point charges are placed on the x-axis as follows: charge q1 = 3.95 nC is located at x= 0.198 m , and charge q2 = 4.96 nC is
    10·1 answer
  • Name at least two other viruses that are at all time lows due to vaccines.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!