Answer:
F) 15/8
Step-by-step explanation:
<em>A. 17/15</em>
<em>B. 8/17</em>
<em>C. 15/17</em>
<em>D. 8/15</em>
<em>E. 17/8</em>
<em>F. 15/8</em>
Answer:

Step-by-step explanation:
Given

Required
How it'd be displayed on a calculator
Standard calculators, today are built to always convert huge numbers or extremely small number to scientific notations;
This was done to allow the calculator fit each values on its screen
is such a big number that it'll require the calculator to display it using scientific notations;
So, basically we have to convert
to scientific notaton;
This is achieved by replacing
with 
So,
is equivalent to 
We have to find the value of the expression 
We know that the below values.

Hence, in order to find the value of the given expression, we can first rewrite it in terms of 

Now, we know that 
Hence, we have



C is the correct option.
Answer:
Its a function
Step-by-step explanation:
x cant be the same
Answer:
Option B. Cosec θ = –5/3
Option C. Cot θ = 4/3
Option D. Cos θ = –4/5
Step-by-step explanation:
From the question given above, the following data were obtained:
Tan θ = 3/4
θ is in 3rd quadrant
Recall
Tan θ = Opposite / Adjacent
Tan θ = 3/4 = Opposite / Adjacent
Thus,
Opposite = 3
Adjacent = 4
Next, we shall determine the Hypothenus. This can be obtained as follow:
Opposite = 3
Adjacent = 4
Hypothenus =?
Hypo² = Opp² + Adj²
Hypo² = 3² + 4²
Hypo² = 9 + 16
Hypo² = 25
Take the square root of both side
Hypo = √25
Hypothenus = 5
Recall:
In the 3rd quadant, only Tan is positive.
Therefore,
Hypothenus = –5
Finally, we shall determine Sine θ, Cos θ, Cot θ and Cosec θ to determine which option is correct. This can be obtained as follow:
Opposite = 3
Adjacent = 4
Hypothenus = –5
Sine θ = Opposite / Hypothenus
Sine θ = 3/–5
Sine θ = –3/5
Cos θ = Adjacent / Hypothenus
Cos θ = 4/–5
Cos θ = –4/5
Cot θ = 1/ Tan θ
Tan θ = 3/4
Cot θ = 1 ÷ 3/4
Invert
Cot θ = 1 × 4/3
Cot θ = 4/3
Cosec θ = 1/ Sine θ
Sine θ = –3/5
Cosec θ = 1 ÷ –3/5
Invert
Cosec θ = 1 × –5/3
Cosec θ = –5/3
SUMMARY
Sine θ = –3/5
Cos θ = –4/5
Tan θ = 3/4
Cot θ = 4/3
Cosec θ = –5/3
Therefore, option B, C and D gives the correct answer to the question.