1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Basile [38]
3 years ago
6

Maximizing profit: Suppose you own a tour bus and you book groups of 20 to 70 people for a day tour. The cost per person is $30

minus $0.25 for every ticket sold. If gas and other misc costs are $200, how many tickects should you sell to maximize your profit? Treat the number of tickets as a nonnegative real number.
Mathematics
1 answer:
valina [46]3 years ago
6 0
Revenue:
R ( x ) / x = 30 - 0.25 x
R ( x ) = 30 x - 0.25 x²
Profit:
P ( x ) = 30 x - 0.25 x² - 200
P ` ( x ) = 30 - 0.5 x
30 - 0.5 x = 0
0.5 x = 30
x = 60
P max = 30 · 60 - 0.25 · 3600 - 200 = $700
Answer:
I should sell 60 tickets to maximize the profit.

You might be interested in
a garden has more roses than daisies, and it has 9 daisies.furthermore, each flower in the garden has more then 3 petals.Let r r
USPshnik [31]

Answer:

76867r5u57yu556i6

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
3 years ago
Please help picture shown and show workkkk
tankabanditka [31]
1)
Area of largest circle - 2 * Area of one smaller circle = Area of the shaded region

AE = diameter of large circle = 48cm
radius of larger circle = diameter / 2 = 48cm / 2 = 24cm

4 circles fit across the diameter of the circle, so the diameter of the larger circle = 4 * diameter of the smaller circle
diameter of larger circle = 48cm = 4 * diameter of the smaller circle
diameter of the smaller circle = 48cm / 4 = 12cm
radius of smaller circle = diameter / 2 = 12cm / 2 = 6cm

Area of a circle = pi * r^2

Now plug the circle area equation into the first equation:
A_{shaded}=A_{l} - 2*A_{s}\\\\A_{shaded}=[\pi (r_{l})^{2}]-2*[\pi (r_{s})^{2}]\\\\A_{shaded}=[\pi (48cm)^{2}]-2*[\pi (6cm)^{2}]\\\\A_{shaded}=2304\pi-72\pi\\\\Area\ of\ shaded\ region\ is\ 2232\pi.


2)
Area of the shaded region = 2/7 * Area of the smaller circle
Area of the unshaded region = Area of larger circle + Area of smaller circle - Area of shaded region * 2
A_{unshaded}=[\pi (r_{1})^{2}]+[\pi (r_{2})^{2}]-2*[\pi (r_{2})^{2}]*\frac{2}{7}\\\\A_{unshaded}=[\pi (10cm)^{2}]+[\pi (7cm)^{2}] -\frac{4}{7}[\pi (7cm)^{2}]\\\\A_{unshaded}=100\pi\ cm^{2}+49\pi\ cm^{2}-\frac{4*49\pi\ cm^{2}}{7}\\\\A_{unshaded}=149\pi\ cm^{2}-(4*7*\pi\ cm^{2})\\\\A_{unshaded}=149\pi\ cm^{2}-28\pi\ cm^{2}\\\\\\A_{unshaded}=121\pi\ cm^{2}
3 0
4 years ago
Is 25 to 16 proportional to 5 to 4
e-lub [12.9K]
Yes 25 to 16 is proportional to 5 to 4.
This is because 25 can be simplified to 5 by dividing 25 by 5.
In the same way 16 can be simplified to 4 by dividing it by 4.

It results in the same proportion which is 5 to 4.
6 0
3 years ago
Multiply the binomials (3x - 5) and (4x + 6).
mestny [16]

Answer:

12x² - 2x - 30

Step-by-step explanation:

(3x - 5)(4x + 6)

12x² + 18x - 20x - 30

12x² - 2x - 30

3 0
4 years ago
Other questions:
  • QUICK HELP WHICH VALUE REPRESENTS l26l? A) -26 B) 0 C) 26 D) 126​
    8·2 answers
  • A quality control inspector has drawn a sample of 12 light bulbs from a recent production lot. If the number of defective bulbs
    5·1 answer
  • What is the difference between the mean and the median of the data set?
    14·1 answer
  • Helpppp!!!!!!?! Need helpb
    13·1 answer
  • SOLVE. 3 sin x + 5 cos x = 0
    13·2 answers
  • Help SOS LOTS OF SOS
    13·2 answers
  • Pls hurry ty for answering
    14·1 answer
  • Quick question. Is the term “at least” &lt; with equal sign or &gt; with equal sign?
    13·1 answer
  • Hey guys can anyone help me!.
    12·2 answers
  • Which letter people? 10 points and brainliest :)
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!