Answer:
c)
Step-by-step explanation:
(-4,2) ; (4,-5)
![Slope=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\\\\=\frac{-5-2}{4-[-4]}\\\\=\frac{-7}{4+4}\\\\=\frac{-7}{8}](https://tex.z-dn.net/?f=Slope%3D%5Cfrac%7By_%7B2%7D-y_%7B1%7D%7D%7Bx_%7B2%7D-x_%7B1%7D%7D%5C%5C%5C%5C%3D%5Cfrac%7B-5-2%7D%7B4-%5B-4%5D%7D%5C%5C%5C%5C%3D%5Cfrac%7B-7%7D%7B4%2B4%7D%5C%5C%5C%5C%3D%5Cfrac%7B-7%7D%7B8%7D)
m = -7/8 ; (-4,2)
equation: y - y1 = m(x - x1)
![y-2=\frac{-7}{8}(x-[-4])\\\\y-2=\frac{-7}{8}(x+4)\\\\y-2=\frac{-7}{8}x +\frac{-7}{8}*4\\\\y=\frac{-7}{8}x-\frac{7}{2}+2\\\\y=\frac{-7}{8}x-\frac{7}{2}+\frac{4}{2}\\\\y=\frac{-7}{8}x-\frac{3}{2}\\](https://tex.z-dn.net/?f=y-2%3D%5Cfrac%7B-7%7D%7B8%7D%28x-%5B-4%5D%29%5C%5C%5C%5Cy-2%3D%5Cfrac%7B-7%7D%7B8%7D%28x%2B4%29%5C%5C%5C%5Cy-2%3D%5Cfrac%7B-7%7D%7B8%7Dx%20%2B%5Cfrac%7B-7%7D%7B8%7D%2A4%5C%5C%5C%5Cy%3D%5Cfrac%7B-7%7D%7B8%7Dx-%5Cfrac%7B7%7D%7B2%7D%2B2%5C%5C%5C%5Cy%3D%5Cfrac%7B-7%7D%7B8%7Dx-%5Cfrac%7B7%7D%7B2%7D%2B%5Cfrac%7B4%7D%7B2%7D%5C%5C%5C%5Cy%3D%5Cfrac%7B-7%7D%7B8%7Dx-%5Cfrac%7B3%7D%7B2%7D%5C%5C)
The product of 5 and n : 5(n)
6.7 more : +6.7 5n + 6.7 is your expression Hope this helps
It is side angle side postulate
fd is congruet to db
ed is congruent to da
and vertical angles theorem
Answer:
Area: 16
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Calculus</u>
Derivatives
Derivative Notation
Integrals - Area under the curve
Trig Integration
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Multiplied Constant]:
Integration Property [Addition/Subtraction]: ![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Bf%28x%29%20%5Cpm%20g%28x%29%5D%7D%20%5C%2C%20dx%20%3D%20%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%5Cpm%20%5Cint%20%7Bg%28x%29%7D%20%5C%2C%20dx)
U-Substitution
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
<em />

Bounds of Integration: 0 ≤ x ≤ π
<u>Step 2: Find Area Pt. 1</u>
- Set up integral:
![\displaystyle A = \int\limits^{\pi}_0 {[8sin(x) + sin(8x)]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5B8sin%28x%29%20%2B%20sin%288x%29%5D%7D%20%5C%2C%20dx)
- Rewrite integral [Integration Property - Addition/Subtraction]:

- [1st Integral] Rewrite [Integration Property - Multiplied Constant]:

- [1st Integral] Integrate [Trig Integration]:
![\displaystyle A = 8[-cos(x)] \bigg| \limits^{\pi}_0 + \int\limits^{\pi}_0 {sin(8x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%208%5B-cos%28x%29%5D%20%5Cbigg%7C%20%5Climits%5E%7B%5Cpi%7D_0%20%2B%20%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7Bsin%288x%29%7D%20%5C%2C%20dx)
- [1st Integral] Evaluate [Integration Rule - FTC 1]:

- Multiply:

<u>Step 3: Identify Variables</u>
<em>Identify variables for u-substitution.</em>
u = 8x
du = 8dx
<u>Step 4: Find Area Pt. 2</u>
- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] U-Substitution:

- [Integral] Integrate [Trig Integration]:
![\displaystyle A = 16 + \frac{1}{8}[-cos(u)] \bigg| \limits^{8\pi}_0](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%2016%20%2B%20%5Cfrac%7B1%7D%7B8%7D%5B-cos%28u%29%5D%20%5Cbigg%7C%20%5Climits%5E%7B8%5Cpi%7D_0)
- [Integral] Evaluate [Integration Rule - FTC 1]:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Integration - Area under the curve
Book: College Calculus 10e
2 x 2/9 Will Be Less Than 2