1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
likoan [24]
4 years ago
13

When given angle measures of 25°, 65°, and

Mathematics
1 answer:
Blababa [14]4 years ago
6 0

You first add all the angles together.

25 + 65 + 90 = 180°

The total angle measurement of a triangle is 180°. Therefore, it is possible to only make one triangle.

You might be interested in
Write the slope-intercept form of the equation for the line. a. y=-8/7x+3/2 b.y= -3/2x+7/8 c.y=-7/8x-3/2 d.y=7/8x+3/2 Write the
fgiga [73]

Answer:

c)

Step-by-step explanation:

(-4,2)  ; (4,-5)

Slope=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\\\\=\frac{-5-2}{4-[-4]}\\\\=\frac{-7}{4+4}\\\\=\frac{-7}{8}

m = -7/8 ;   (-4,2)

equation: y - y1 = m(x - x1)

y-2=\frac{-7}{8}(x-[-4])\\\\y-2=\frac{-7}{8}(x+4)\\\\y-2=\frac{-7}{8}x +\frac{-7}{8}*4\\\\y=\frac{-7}{8}x-\frac{7}{2}+2\\\\y=\frac{-7}{8}x-\frac{7}{2}+\frac{4}{2}\\\\y=\frac{-7}{8}x-\frac{3}{2}\\

5 0
3 years ago
6.7 more than the product of 5 and n
Daniel [21]

The product of 5 and n : 5(n) 6.7 more : +6.7   5n + 6.7 is your expression    Hope this helps

6 0
4 years ago
Which reason justifies the last step in a proof that ΔEDG≌ΔADC?
Alja [10]
It is side angle side postulate 
fd is congruet to db
ed is congruent to da
and vertical angles theorem
5 0
4 years ago
Consider the following. (See attachment)
Furkat [3]

Answer:

Area: 16

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Integrals - Area under the curve

Trig Integration

Integration Rule [Fundamental Theorem of Calculus 1]:                                        \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                             \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                           \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle f(x) = 8sin(x) + sin(8x)

\displaystyle y = 0

Bounds of Integration: 0 ≤ x ≤ π

<u>Step 2: Find Area Pt. 1</u>

  1. Set up integral:                                                                                                 \displaystyle A = \int\limits^{\pi}_0 {[8sin(x) + sin(8x)]} \, dx
  2. Rewrite integral [Integration Property - Addition/Subtraction]:                     \displaystyle A = \int\limits^{\pi}_0 {8sin(x)} \, dx +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  3. [1st Integral] Rewrite [Integration Property - Multiplied Constant]:                \displaystyle A = 8\int\limits^{\pi}_0 {sin(x)} \, dx +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  4. [1st Integral] Integrate [Trig Integration]:                                                         \displaystyle A = 8[-cos(x)] \bigg| \limits^{\pi}_0 +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  5. [1st Integral] Evaluate [Integration Rule - FTC 1]:                                            \displaystyle A = 8(2) +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  6. Multiply:                                                                                                              \displaystyle A = 16 + \int\limits^{\pi}_0 {sin(8x)} \, dx

<u>Step 3: Identify Variables</u>

<em>Identify variables for u-substitution.</em>

u = 8x

du = 8dx

<u>Step 4: Find Area Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                     \displaystyle A = 16 + \frac{1}{8}\int\limits^{\pi}_0 {8sin(8x)} \, dx
  2. [Integral] U-Substitution:                                                                                  \displaystyle A = 16 + \frac{1}{8}\int\limits^{8\pi}_0 {sin(u)} \, du
  3. [Integral] Integrate [Trig Integration]:                                                              \displaystyle A = 16 + \frac{1}{8}[-cos(u)] \bigg| \limits^{8\pi}_0
  4. [Integral] Evaluate [Integration Rule - FTC 1]:                                                  \displaystyle A = 16 + \frac{1}{8}(0)
  5. Simplify:                                                                                                             \displaystyle A = 16

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration - Area under the curve

Book: College Calculus 10e

4 0
3 years ago
Complete the statement with equal to, greater than, or less than.
enyata [817]
2 x 2/9 Will Be Less Than 2
5 0
3 years ago
Other questions:
  • Which unit of measure would be appropriate for the area of a soccer field that is 105 meter long and 67 meters wide?
    9·1 answer
  • What is the minimum force required to prevent a ball weighing 22.6 lb from rolling down a ramp which is inclined at 39.0 with th
    11·1 answer
  • What is the distance between the points (2,6) and (5,2) ?
    8·1 answer
  • Can somebody please help me with this
    11·1 answer
  • Is this a linear function? One person sends an email to 2 people. Those 2 people send it to 4 people, and those 4 send it to 8 p
    14·1 answer
  • Help trigonometry (angles of evaluation and depression)
    5·1 answer
  • HELP ASAP I DO NOT UNDERSTAND THIS QUESTION AND WILL REALLY APPRECIATE AN ANSWER AND SMALL EXPLANATION ILL MARK YOU BRAINLIST ON
    9·1 answer
  • On average the U.S produces 78.6 million cars a year. About how many cars does the U.S produce in 2.33 years? Show your work
    9·1 answer
  • A number is chosen at random from 1 to 50. Find the probability of selecting factors of 36.
    15·1 answer
  • Joshua invests​ $500 at the interest rate shown. Felix invests​ $1,000 in an account with the same compounding but at​ 6% intere
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!