Answer:
Area: 16
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Calculus</u>
Derivatives
Derivative Notation
Integrals - Area under the curve
Trig Integration
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Multiplied Constant]:
Integration Property [Addition/Subtraction]: ![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Bf%28x%29%20%5Cpm%20g%28x%29%5D%7D%20%5C%2C%20dx%20%3D%20%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%5Cpm%20%5Cint%20%7Bg%28x%29%7D%20%5C%2C%20dx)
U-Substitution
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
<em />

Bounds of Integration: 0 ≤ x ≤ π
<u>Step 2: Find Area Pt. 1</u>
- Set up integral:
![\displaystyle A = \int\limits^{\pi}_0 {[8sin(x) + sin(8x)]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5B8sin%28x%29%20%2B%20sin%288x%29%5D%7D%20%5C%2C%20dx)
- Rewrite integral [Integration Property - Addition/Subtraction]:

- [1st Integral] Rewrite [Integration Property - Multiplied Constant]:

- [1st Integral] Integrate [Trig Integration]:
![\displaystyle A = 8[-cos(x)] \bigg| \limits^{\pi}_0 + \int\limits^{\pi}_0 {sin(8x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%208%5B-cos%28x%29%5D%20%5Cbigg%7C%20%5Climits%5E%7B%5Cpi%7D_0%20%2B%20%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7Bsin%288x%29%7D%20%5C%2C%20dx)
- [1st Integral] Evaluate [Integration Rule - FTC 1]:

- Multiply:

<u>Step 3: Identify Variables</u>
<em>Identify variables for u-substitution.</em>
u = 8x
du = 8dx
<u>Step 4: Find Area Pt. 2</u>
- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] U-Substitution:

- [Integral] Integrate [Trig Integration]:
![\displaystyle A = 16 + \frac{1}{8}[-cos(u)] \bigg| \limits^{8\pi}_0](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%2016%20%2B%20%5Cfrac%7B1%7D%7B8%7D%5B-cos%28u%29%5D%20%5Cbigg%7C%20%5Climits%5E%7B8%5Cpi%7D_0)
- [Integral] Evaluate [Integration Rule - FTC 1]:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Integration - Area under the curve
Book: College Calculus 10e