1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arturiano [62]
3 years ago
11

Consider the following. (See attachment)

Mathematics
1 answer:
Furkat [3]3 years ago
4 0

Answer:

Area: 16

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Integrals - Area under the curve

Trig Integration

Integration Rule [Fundamental Theorem of Calculus 1]:                                        \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                             \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                           \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle f(x) = 8sin(x) + sin(8x)

\displaystyle y = 0

Bounds of Integration: 0 ≤ x ≤ π

<u>Step 2: Find Area Pt. 1</u>

  1. Set up integral:                                                                                                 \displaystyle A = \int\limits^{\pi}_0 {[8sin(x) + sin(8x)]} \, dx
  2. Rewrite integral [Integration Property - Addition/Subtraction]:                     \displaystyle A = \int\limits^{\pi}_0 {8sin(x)} \, dx +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  3. [1st Integral] Rewrite [Integration Property - Multiplied Constant]:                \displaystyle A = 8\int\limits^{\pi}_0 {sin(x)} \, dx +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  4. [1st Integral] Integrate [Trig Integration]:                                                         \displaystyle A = 8[-cos(x)] \bigg| \limits^{\pi}_0 +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  5. [1st Integral] Evaluate [Integration Rule - FTC 1]:                                            \displaystyle A = 8(2) +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  6. Multiply:                                                                                                              \displaystyle A = 16 + \int\limits^{\pi}_0 {sin(8x)} \, dx

<u>Step 3: Identify Variables</u>

<em>Identify variables for u-substitution.</em>

u = 8x

du = 8dx

<u>Step 4: Find Area Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                     \displaystyle A = 16 + \frac{1}{8}\int\limits^{\pi}_0 {8sin(8x)} \, dx
  2. [Integral] U-Substitution:                                                                                  \displaystyle A = 16 + \frac{1}{8}\int\limits^{8\pi}_0 {sin(u)} \, du
  3. [Integral] Integrate [Trig Integration]:                                                              \displaystyle A = 16 + \frac{1}{8}[-cos(u)] \bigg| \limits^{8\pi}_0
  4. [Integral] Evaluate [Integration Rule - FTC 1]:                                                  \displaystyle A = 16 + \frac{1}{8}(0)
  5. Simplify:                                                                                                             \displaystyle A = 16

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration - Area under the curve

Book: College Calculus 10e

You might be interested in
Solve each equation, sho<br> 5) 2x – 0,5 = 3.7
soldier1979 [14.2K]
Add 0.5 to 0.5 and 3.7 to make X by itself

3.7 + 0.5 is 4.2

4.2 / 2 (because you get X by itself

X = 2.1
8 0
4 years ago
The local gym offers classes in strength and agility. The gym has 16 strength classes
Bas_tet [7]

Answer:

B. 1.25

Step-by-step explanation:

20/16

4 0
4 years ago
Read 2 more answers
Tony is driving to visit a friend who moved to another state. For the first hour, he drives on the interstate at a constant rate
RideAnS [48]

Answer:

185

Step-by-step explanation:

60(1 hour)+90(45x2hours)+35(1 hour)= 185

8 0
3 years ago
Read 2 more answers
Help me find the figure , area formula and graph the dots and find the area
Advocard [28]

Answer:

Looking at the given points we know that it is going to be a triangle because it only have 3 points.  Therefore the figure is a triangle and the area formula would be A=\frac{1}{2}*b*h.

You can look at the attached graph and what we see is that our height of the triangle is from y=-3 to y=4 which means that our height is 7 units high.  We can also see that our base starts at x=-4 and ends at x=4 making us have a base of 8 units.

<u>We then plug in the values and solve</u>

A = \frac{1}{2}*7\ units * 8\ units

A = \frac{1}{2}*56\ units^2

A = 28\ units^2

Therefore, the area of our triangle is 28\ units^2

Hope this helps!  Let me know if you have any questions

4 0
2 years ago
Two actions that are inverses of each other and explain how one action "undoes" the other.
ozzi

Answer:

jayfeather friend me

Step-by-step explanation:

The inverse functions “undo” each other, You can use composition of functions to verify that 2 functions are inverses. When you compose two inverses… the result is the input value of x. 3 3 g x x = Because f(g(x)) = g(f(x)) = x, they are inverses.

3 0
3 years ago
Other questions:
  • The mathematics faculty at a college consists of 4 ​professors, 10 associate​ professors,8 assistant​ professors, and 10 instruc
    11·1 answer
  • Every negative integer J is less than or equal to its inverse
    13·1 answer
  • Write the equation of the line in slope intercept form:
    13·1 answer
  • The vertices of rectangle ABCD are A(3, 1), B(-5, 1),
    5·1 answer
  • A trapezoid has the following dimensions:
    8·1 answer
  • What is the equation of the line that passes through the points (1,2/3)
    5·1 answer
  • What is the value of 6x^2−4x when x = 5? 130 105 70 40
    13·1 answer
  • What function family does Y=1/3x – 7 belong to?
    10·1 answer
  • Most of the geometry concepts and theorems that are learned in high school today were first discovered and proved by mathematici
    6·1 answer
  • What if it’s not correct or not ?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!