1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arturiano [62]
2 years ago
11

Consider the following. (See attachment)

Mathematics
1 answer:
Furkat [3]2 years ago
4 0

Answer:

Area: 16

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Integrals - Area under the curve

Trig Integration

Integration Rule [Fundamental Theorem of Calculus 1]:                                        \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                             \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                           \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle f(x) = 8sin(x) + sin(8x)

\displaystyle y = 0

Bounds of Integration: 0 ≤ x ≤ π

<u>Step 2: Find Area Pt. 1</u>

  1. Set up integral:                                                                                                 \displaystyle A = \int\limits^{\pi}_0 {[8sin(x) + sin(8x)]} \, dx
  2. Rewrite integral [Integration Property - Addition/Subtraction]:                     \displaystyle A = \int\limits^{\pi}_0 {8sin(x)} \, dx +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  3. [1st Integral] Rewrite [Integration Property - Multiplied Constant]:                \displaystyle A = 8\int\limits^{\pi}_0 {sin(x)} \, dx +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  4. [1st Integral] Integrate [Trig Integration]:                                                         \displaystyle A = 8[-cos(x)] \bigg| \limits^{\pi}_0 +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  5. [1st Integral] Evaluate [Integration Rule - FTC 1]:                                            \displaystyle A = 8(2) +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  6. Multiply:                                                                                                              \displaystyle A = 16 + \int\limits^{\pi}_0 {sin(8x)} \, dx

<u>Step 3: Identify Variables</u>

<em>Identify variables for u-substitution.</em>

u = 8x

du = 8dx

<u>Step 4: Find Area Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                     \displaystyle A = 16 + \frac{1}{8}\int\limits^{\pi}_0 {8sin(8x)} \, dx
  2. [Integral] U-Substitution:                                                                                  \displaystyle A = 16 + \frac{1}{8}\int\limits^{8\pi}_0 {sin(u)} \, du
  3. [Integral] Integrate [Trig Integration]:                                                              \displaystyle A = 16 + \frac{1}{8}[-cos(u)] \bigg| \limits^{8\pi}_0
  4. [Integral] Evaluate [Integration Rule - FTC 1]:                                                  \displaystyle A = 16 + \frac{1}{8}(0)
  5. Simplify:                                                                                                             \displaystyle A = 16

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration - Area under the curve

Book: College Calculus 10e

You might be interested in
I don’t understand what to write
anzhelika [568]
I think you have to solve like each section like (5x3+3)2 first solve that and then solve the middle one and then the last one and I think they all have to be equal to each other , and if they aren’t then her anwser isn’t correct
4 0
3 years ago
What is the solution to 1&lt; 25-4x&lt;19?
koban [17]
Hope this helps

Hope you have a good day

4 0
3 years ago
15% of the parking spaces at a school are reserved. The school has 12 reserved spaces. How many parking spaces are there in tota
Strike441 [17]

Answer: 76

Step-by-step explanation:

well, we know that 15% of the X is 12, so we first use 6 15%, which is 90% 6X12=72. next, we would use 12/3, which is 4. 72+4=76.

3 0
2 years ago
Read 2 more answers
Daniel has 6 teaspoons of salt. The ratio of teaspoons to tablespoons is 3 :1. How many tablespoons of salt does Daniel have
ddd [48]

Answer:

2

Step-by-step explanation:

because for every 3 teaspoons of salt he will have 1 tablespoon of salt and 6 divided by 3 is 2

8 0
2 years ago
How to rename 120,000
EleoNora [17]
One hundred twenty thousand
7 0
3 years ago
Other questions:
  • Number 23 I have no clue
    13·1 answer
  • Does anyone know the answer
    14·1 answer
  • 4: At the checkout
    13·2 answers
  • Kevin, Michael and Darren all do their own laundry at home. Kevin does his laundry every 9 days, Michael every 10 days, and Darr
    9·2 answers
  • A welder cut a piece of metal so that it fits tightly into its spot. The welder cuts 9\16 of an inch off the metal so that it me
    13·2 answers
  • The Greens want to put an addition on their house 18 months from now. They will need to save $10,620 in order to achieve this go
    9·1 answer
  • Please help me on this one!
    11·2 answers
  • Find the slope of the line shown on this graph. If your answer is a fraction write the
    10·1 answer
  • Billy has 201 packages of postcards. Each package has 18 cards. Use rounding to estimate. About
    7·1 answer
  • Equations that represent a line parallel to y=8x+4
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!