1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arturiano [62]
3 years ago
11

Consider the following. (See attachment)

Mathematics
1 answer:
Furkat [3]3 years ago
4 0

Answer:

Area: 16

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Integrals - Area under the curve

Trig Integration

Integration Rule [Fundamental Theorem of Calculus 1]:                                        \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                             \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                           \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle f(x) = 8sin(x) + sin(8x)

\displaystyle y = 0

Bounds of Integration: 0 ≤ x ≤ π

<u>Step 2: Find Area Pt. 1</u>

  1. Set up integral:                                                                                                 \displaystyle A = \int\limits^{\pi}_0 {[8sin(x) + sin(8x)]} \, dx
  2. Rewrite integral [Integration Property - Addition/Subtraction]:                     \displaystyle A = \int\limits^{\pi}_0 {8sin(x)} \, dx +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  3. [1st Integral] Rewrite [Integration Property - Multiplied Constant]:                \displaystyle A = 8\int\limits^{\pi}_0 {sin(x)} \, dx +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  4. [1st Integral] Integrate [Trig Integration]:                                                         \displaystyle A = 8[-cos(x)] \bigg| \limits^{\pi}_0 +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  5. [1st Integral] Evaluate [Integration Rule - FTC 1]:                                            \displaystyle A = 8(2) +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  6. Multiply:                                                                                                              \displaystyle A = 16 + \int\limits^{\pi}_0 {sin(8x)} \, dx

<u>Step 3: Identify Variables</u>

<em>Identify variables for u-substitution.</em>

u = 8x

du = 8dx

<u>Step 4: Find Area Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                     \displaystyle A = 16 + \frac{1}{8}\int\limits^{\pi}_0 {8sin(8x)} \, dx
  2. [Integral] U-Substitution:                                                                                  \displaystyle A = 16 + \frac{1}{8}\int\limits^{8\pi}_0 {sin(u)} \, du
  3. [Integral] Integrate [Trig Integration]:                                                              \displaystyle A = 16 + \frac{1}{8}[-cos(u)] \bigg| \limits^{8\pi}_0
  4. [Integral] Evaluate [Integration Rule - FTC 1]:                                                  \displaystyle A = 16 + \frac{1}{8}(0)
  5. Simplify:                                                                                                             \displaystyle A = 16

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration - Area under the curve

Book: College Calculus 10e

You might be interested in
Ted needs an average of at least 70 on his three history tests. He has already scored 85 and 60 on two tests. What is the minimu
baherus [9]
He must get a 65 as a minimum grade on his third test to get an average of 70.
Equation is
                       85 + 60 + x
                     ------------------- greater than or equal to 70
                              3
3 0
3 years ago
Mr. Aba builds a circular patio with a diameter of 12 feet. He covers the patio with paving stones. The cost of the paving stone
Anettt [7]

Answer:

395.85

Step-by-step explanation:

If the diameter is 12, then the radius must be 6. Following the formula of pi: 2 * pi * radius, our result is 37.7. 37.7 * 10.50 is 395.85

I really hope this helps. My memory of circles and pi isn't the best.

8 0
3 years ago
Read 2 more answers
Write the equation of a circle with center (7.0) with radius 3.
harina [27]

Answer:

2.3

Step-by-step explanation:

so the 7.0 gets dived by the 3 because the radius is half of the circle.

5 0
3 years ago
Read 2 more answers
an initial investment of $9000 grows at an annual interest rate of 5% compounded continuously. how long will it take to double t
tino4ka555 [31]

Answer:

20 years

Step-by-step explanation:

9000/ 100= 900 = 10%

900/2= 450

450 x 2= 900

900 x 10= 9000

Now we multiply 10 by 2 because we doubled the value of our 450 into a 900 and now we get 20.

8 0
3 years ago
X + (4 1/3)= (-2 5/6)
vladimir1956 [14]

Answer:

x+((4 + 1/3))=(-(2 + 5/6))

6x = -43  

x≈ -7.166667


3 0
3 years ago
Other questions:
  • To the nearest​ millimeter, a cell phone is 135 mm long and 66 mm wide. What is the ratio of the width to the​ length?
    6·1 answer
  • Find 0.01 more than 9.154
    13·1 answer
  • a daily newspaper has 10225 subscribers when it began publication. six years old later it has 8200 subscribers what is the avera
    13·1 answer
  • A rectangle is 10 cm longer than it is wide. If its length and width are both decreased by 2 cm, its area
    8·1 answer
  • A survey has a margin of error of 4%. In the survey, 67 of the 110 people interviewed said they would vote for candidate A. If t
    6·1 answer
  • Can someone help me solve these or explain it to me?
    10·2 answers
  • A 35 year old mother realized that her age is twice the sum of her two children's age her son Jose is two year old than her daug
    13·1 answer
  • 3 of 9
    15·1 answer
  • An ant walk around a piece of a leaf that is in the shape of a right triangle. What is the total distance the ant traveled?
    9·1 answer
  • HELP!!
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!