1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arturiano [62]
2 years ago
11

Consider the following. (See attachment)

Mathematics
1 answer:
Furkat [3]2 years ago
4 0

Answer:

Area: 16

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Integrals - Area under the curve

Trig Integration

Integration Rule [Fundamental Theorem of Calculus 1]:                                        \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                             \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                           \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle f(x) = 8sin(x) + sin(8x)

\displaystyle y = 0

Bounds of Integration: 0 ≤ x ≤ π

<u>Step 2: Find Area Pt. 1</u>

  1. Set up integral:                                                                                                 \displaystyle A = \int\limits^{\pi}_0 {[8sin(x) + sin(8x)]} \, dx
  2. Rewrite integral [Integration Property - Addition/Subtraction]:                     \displaystyle A = \int\limits^{\pi}_0 {8sin(x)} \, dx +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  3. [1st Integral] Rewrite [Integration Property - Multiplied Constant]:                \displaystyle A = 8\int\limits^{\pi}_0 {sin(x)} \, dx +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  4. [1st Integral] Integrate [Trig Integration]:                                                         \displaystyle A = 8[-cos(x)] \bigg| \limits^{\pi}_0 +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  5. [1st Integral] Evaluate [Integration Rule - FTC 1]:                                            \displaystyle A = 8(2) +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  6. Multiply:                                                                                                              \displaystyle A = 16 + \int\limits^{\pi}_0 {sin(8x)} \, dx

<u>Step 3: Identify Variables</u>

<em>Identify variables for u-substitution.</em>

u = 8x

du = 8dx

<u>Step 4: Find Area Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                     \displaystyle A = 16 + \frac{1}{8}\int\limits^{\pi}_0 {8sin(8x)} \, dx
  2. [Integral] U-Substitution:                                                                                  \displaystyle A = 16 + \frac{1}{8}\int\limits^{8\pi}_0 {sin(u)} \, du
  3. [Integral] Integrate [Trig Integration]:                                                              \displaystyle A = 16 + \frac{1}{8}[-cos(u)] \bigg| \limits^{8\pi}_0
  4. [Integral] Evaluate [Integration Rule - FTC 1]:                                                  \displaystyle A = 16 + \frac{1}{8}(0)
  5. Simplify:                                                                                                             \displaystyle A = 16

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration - Area under the curve

Book: College Calculus 10e

You might be interested in
Help!!!!<br>Given log7⁡3≈0.5646 and log7⁡16≈1.4248, evaluate the expressions.​
Alinara [238K]

Answer:

a)  0.356

b)  1.1397

Step-by-step explanation:

a) log₇2

  • log(2) / log(7)
  • 0.356

b) log₇ (¹⁴⁷/₁₆)

  • <u>log (¹⁴⁷/₁₆)</u>

          log (7)

  • 1.1397
6 0
2 years ago
Help me please!!!!!!
Zarrin [17]
C. (1,-4)
Vertex is the point where the parabola begins. The vertex is one unit to the right on the x axis and 4 units down on the y axis which gives you the coordinate (1,-4)
5 0
3 years ago
Jerome found the lengths of each side of triangle QRS as shown, but did not simplify his answers. Simplify the lengths of each s
emmainna [20.7K]

Answer:

Triangle QRS is an isosceles triangle because QR = RS.

Step-by-step explanation:

option D for Edgu hope this helps :)

9 0
3 years ago
Read 2 more answers
Pls help being timed
Airida [17]

50 miles / 4 hours = 12.5 miles per hour

Answer: 12.5

7 0
3 years ago
Can someone help me with this? Pls ty!
Sedbober [7]

Answer:

ACD = 120°

Step-by-step explanation:

Exterior angle theorem.

3x = (x + 12) + (x + 28)

3x = 2x + 40

 x = 40

ACD = 3x = 3(40) = 120°

8 0
2 years ago
Other questions:
  • Lilly designed the letters of her name on the computer and printed them on paper. the table below shows the width and height of
    12·1 answer
  • Ralph is 3 times as old as Sara. In 6 years, Ralph will be only twice as old as Sara will be then.
    13·1 answer
  • What is -8 square root of 9 when simplified​
    8·1 answer
  • Substract 11 3/4 - 9 8/15
    11·1 answer
  • Luis found a new text messaging plan which will charge him $2.00 for 80 messages. Using this plan, how much would he pay for 900
    9·1 answer
  • Which algebraic expression is equivalent to -2(4x -5y - 5x)
    11·1 answer
  • Snow is approximately 1/8 as heavy as water how many inches of snow would it take to weigh as much as 3 1/2inches of rain fall
    11·1 answer
  • Choose the correct formula for the function h. HELP NEEDED ASAP
    11·1 answer
  • The cost of producing n necklaces is p(n) = 15n + 60. The necklaces cost $30, which can be represented by c(n) = 30n. For how ma
    13·1 answer
  • QuestionUse the Distributive Property to simplify the expression.9(3+c+4) =
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!