1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arturiano [62]
3 years ago
11

Consider the following. (See attachment)

Mathematics
1 answer:
Furkat [3]3 years ago
4 0

Answer:

Area: 16

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Integrals - Area under the curve

Trig Integration

Integration Rule [Fundamental Theorem of Calculus 1]:                                        \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                             \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                           \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle f(x) = 8sin(x) + sin(8x)

\displaystyle y = 0

Bounds of Integration: 0 ≤ x ≤ π

<u>Step 2: Find Area Pt. 1</u>

  1. Set up integral:                                                                                                 \displaystyle A = \int\limits^{\pi}_0 {[8sin(x) + sin(8x)]} \, dx
  2. Rewrite integral [Integration Property - Addition/Subtraction]:                     \displaystyle A = \int\limits^{\pi}_0 {8sin(x)} \, dx +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  3. [1st Integral] Rewrite [Integration Property - Multiplied Constant]:                \displaystyle A = 8\int\limits^{\pi}_0 {sin(x)} \, dx +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  4. [1st Integral] Integrate [Trig Integration]:                                                         \displaystyle A = 8[-cos(x)] \bigg| \limits^{\pi}_0 +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  5. [1st Integral] Evaluate [Integration Rule - FTC 1]:                                            \displaystyle A = 8(2) +  \int\limits^{\pi}_0 {sin(8x)} \, dx
  6. Multiply:                                                                                                              \displaystyle A = 16 + \int\limits^{\pi}_0 {sin(8x)} \, dx

<u>Step 3: Identify Variables</u>

<em>Identify variables for u-substitution.</em>

u = 8x

du = 8dx

<u>Step 4: Find Area Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                     \displaystyle A = 16 + \frac{1}{8}\int\limits^{\pi}_0 {8sin(8x)} \, dx
  2. [Integral] U-Substitution:                                                                                  \displaystyle A = 16 + \frac{1}{8}\int\limits^{8\pi}_0 {sin(u)} \, du
  3. [Integral] Integrate [Trig Integration]:                                                              \displaystyle A = 16 + \frac{1}{8}[-cos(u)] \bigg| \limits^{8\pi}_0
  4. [Integral] Evaluate [Integration Rule - FTC 1]:                                                  \displaystyle A = 16 + \frac{1}{8}(0)
  5. Simplify:                                                                                                             \displaystyle A = 16

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration - Area under the curve

Book: College Calculus 10e

You might be interested in
Given :
pashok25 [27]

\\ \sf\longmapsto A=(1-4)-(2+1)

\\ \sf\longmapsto A=-3-3

\\ \sf\longmapsto A=-6

\\ \sf\longmapsto B=(3-\dfrac{1}{2})-(2-4)

\\ \sf\longmapsto B=\left(\dfrac{5}{2}\right)+2

\\ \sf\longmapsto B=\dfrac{5+4}{2}

\\ \sf\longmapsto B=\dfrac{9}{2}

Now

\\ \sf\longmapsto AB=-6\times \dfrac{9}{2}

\\ \sf\longmapsto AB=-3(9)

\\ \sf\longmapsto AB=-27

BA

\\ \sf\longmapsto \dfrac{9}{2}\times (-6)

\\ \sf\longmapsto 9(-3)

\\ \sf\longmapsto -27

Observed:-

\\ \sf\longmapsto AB=BA

8 0
3 years ago
Completely Factor the expression -18 P - 9​
jekas [21]

can i have brainliest pls tyyy :)))

Answer:

-9(2p+1)

Step-by-step explanation:

-18p - 9

find the GCF (greatest common factor) for the expression.

-9

then, divide each term by the GCF

-18p / -9        -9 / -9

= 2p               = 1

next, put the two terms you get when dividing into the final form of the answer:

GCF on the outside and quotients on the inside

-9(2p+1)

hope this helped! ;)

5 0
4 years ago
Which inequality represents this situation? The number of students, s, who ride in a bus is less than 30. A. S &lt; 30 B. S &gt;
mezya [45]

Answer:

A.s<30

Step-by-step explanation:

We are given that

Number of students who ride in a bus=s

We have to find the inequality which represents the given situation.

According to question

s<30

A.s<30

It is true.

B.s>30

It is false because s is less than 30

C.s\geq 30

It is false because s<30

D.s\leq 30

It is false because s<30

Option A is true.

7 0
3 years ago
Solve for r.<br> r+2&lt;10 <br> FIRST TO SOLVE WILL BE BRAINLIEST
Marat540 [252]

Answer:

The answer is:

r<8

Alternative Form of the answer:

r ∈ (-∞, 8)

4 0
3 years ago
Simplify<br> (5ab^2-4ab 7a^2b) (ab )^-1
algol13
(5ab^2-4ab+7a^2b) (ab )^{-1 }=(5ab^2-4ab+7a^2b) a^{-1}b^{-1}\\\\=\boxed{5b-4+7a}
7 0
4 years ago
Other questions:
  • Solve for x:
    10·2 answers
  • Which postulate or theorem proves that these two triangles are congruent?
    13·1 answer
  • Alana has 100 mL of water in her water bottle. She needs to share it with 3 other students so that all 4 of them have the same a
    5·2 answers
  • What’s the answer to this question?
    7·1 answer
  • What the equivalent to the given decimal<br><br> 5.300
    12·2 answers
  • Please help!!!!!!!!!!!!!!!!!!!!!
    9·1 answer
  • What is 20,700,0000 in standard notation?
    15·1 answer
  • Write the expression in exponential form.
    14·2 answers
  • If line t has a slope of -1/4 what is the slope of any line perpendicular to line t
    15·1 answer
  • Kathleen wants to plant a small vegetable garden in her yard. She fences off a rectangular area with a length of 25.75 feet and
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!