x is case of almonds and y is case of walnuts.
Almonds are packaged 15 bags per case and walnuts are packaged 17 bags per case.
H-E-B orders no more than 200 bags of almonds and walnuts at a time.
So,
x + y < 200
where x and y refers to the number of bags
=======================================================
H-E-B pays $24 per case of almonds and $27 per case of walnuts, but will not order more than $300 total at any one time.
But keep in mind that : Almonds are packaged 15 bags per case and walnuts are packaged 17 bags per case.
So,
24 * (x/15) + 27 * (y/17) < 300
===========================================================
The constraints are:
x + y < 200
(24/15) x + (27/17) y < 300
So, the graph of the previous constraints is as following :
H= -16
Step-by-step explanation:
By using the concept of uniform rectilinear motion, the distance surplus of the average race car is equal to 3 / 4 miles. (Right choice: A)
<h3>How many more distance does the average race car travels than the average consumer car?</h3>
In accordance with the statement, both the average consumer car and the average race car travel at constant speed (v), in miles per hour. The distance traveled by the vehicle (s), in miles, is equal to the product of the speed and time (t), in hours. The distance surplus (s'), in miles, done by the average race car is determined by the following expression:
s' = (v' - v) · t
Where:
- v' - Speed of the average race car, in miles per hour.
- v - Speed of the average consumer car, in miles per hour.
- t - Time, in hours.
Please notice that a hour equal 3600 seconds. If we know that v' = 210 mi / h, v = 120 mi / h and t = 30 / 3600 h, then the distance surplus of the average race car is:
s' = (210 - 120) · (30 / 3600)
s' = 3 / 4 mi
The distance surplus of the average race car is equal to 3 / 4 miles.
To learn more on uniform rectilinear motion: brainly.com/question/10153269
#SPJ1
On Carrie's map, Greenville and North Valley are 90 miles away from each other. On Krystal's map they are 81 miles away from each other.