Using the speed - distance relationship, the time left before the appointed time is 27 minutes.
<u>Recall</u><u> </u><u>:</u>
<u>At</u><u> </u><u>10mph</u><u> </u><u>:</u>
- Distance = 10 × (t + 3) = 10t + 30 - - - (1)
<u>At</u><u> </u><u>12</u><u> </u><u>mph</u><u> </u><u>:</u>
- Distance = 12 × (t - 2) = 12t - 24 - - - - (2)
<em>Equate</em><em> </em><em>(</em><em>1</em><em>)</em><em> </em><em>and</em><em> </em><em>(</em><em>2</em><em>)</em><em> </em><em>:</em>
10t + 30 = 12t - 24
<em>Collect</em><em> </em><em>like</em><em> </em><em>terms</em><em> </em>
10t - 12t = - 24 - 30
-2t = - 54
<em>Divide</em><em> </em><em>both</em><em> </em><em>sides</em><em> </em><em>by</em><em> </em><em>-</em><em> </em><em>2</em>
t = 54 / 2
t = 27
Hence, the time left before the appointed time is 27 minutes.
Learn more : brainly.com/question/25669152
Sqrt(49)*sqrt (-1) -4 = 7i-4
First you cross multiply.
2*(b-4)=6b
Then distribute the 2.
2b-8=6b
Minus 2b from each side.
-8=4b
Divide each side by 4.
-2=b
So -2 is your answer.
Answer:
1/3(n+1)³
Step-by-step explanation:
1x2+2x3+3x4+4x5+...= 1²+1+2²+2+3²+3+...+n²+n+1=
=(1²+2²+3²+...+n²)+(1+2+3+...+n+1)=
=1/6n(n+1)(2n+1)+1/2(n+1)(1+n+1)=
=1/6(n+1)(n(2n+1)+3(n+2))=
=1/6(n+1)(2n²+4n+2)=
=1/6(n+1)*2(n+1)²=
=1/3(n+1)³
A right angle because it forms a perfect L in the figure