1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marusya05 [52]
3 years ago
5

Find the height of the triangle 10 points!

Mathematics
2 answers:
Naddik [55]3 years ago
5 0

Answer:

A. 3.4

Step-by-step explanation:

We have been given a graph of a right triangle and we are asked to find the height of our given right triangle.

Since we know that sine relates the opposite side of a right triangle to hypotenuse, so we will use sine to find height of our given triangle.

\text{Sin}=\frac{\text{Opposite}}{\text{Hypotenuse}}

\text{Sin}(20^{o})=\frac{\text{Opposite}}{\text{Hypotenuse}}

\text{Sin}(20^{o})=\frac{x}{10}

0.342020143326=\frac{x}{10}

0.342020143326\times 10=\frac{x}{10}\times 10

0.342020143326\times 10=x

x=03.42020143326\approx 3.4

Therefore, the height of our given triangle is 3.4 units and option A is the correct choice.

Scorpion4ik [409]3 years ago
4 0
By the 6 trigonometric ratios in a right triangle
 
(sine, cosine, tangent, cotangent, secant, cosecant)

we have the following:


\displaystyle{ sin20^o= \frac{opposite \ side}{hypothenuse}= \frac{x}{10}


So, x=10\cdot sin20^o


sin20° must be given, or can be found using a calculator:


Using the calculator of our pc: Calculator- view:Scientific- press 20 then sin button, we find : sin20°=0.342


x=10\cdot sin20^o=10\cdot0.342=3.42


Answer: A)3.4

You might be interested in
Please Help!!
leva [86]

Answer:

0.0069

Step-by-step explanation:

This is a power series problem.

The taylor power series expansion for sin(x) = x - x³/3! + (x^(5))/5! - (x^(7))/7! + (x^(9))/9! .......

Our question says we should use the first 5 terms to find the value of sin(π). Thus;

sin(π) = π - π³/3! + (π^(5))/5! - (π^(7))/7! + (π^(9))/9!

This gives;

π - (π^(3)/6) + (π^(5))/120 - (π^(7))/5040 + (π^(9))/362880 ≈ 0.0069

5 0
3 years ago
PLLLLLSSSS Heeeellppp ill mark brainliest I promisseeeeeeee plsssss
WARRIOR [948]

Answer:

2\,(x-1)^2=4

which is the first option in the list of possible answers.

Step-by-step explanation:

Recall that the minimum of a parabola generated by a quadratic expression is at the vertex of the parabola, and the formula for the vertex of a quadratic of the general form:

y=ax^2+bx+c

is at   x_{vertex}=\frac{-b}{2\,a}

For our case, where a=2\,\,, b=-4\,\,,\,\,and \,\,c=-2  we have:

x_{vertex}=\frac{-b}{2\,a}\\x_{vertex}=\frac{4}{2\,*\,2}\\x_{vertex}=1

And when x = 1, the value of "y" is:

y(x)=2x^2-4x-2\\y(1)=2(1)^2-4(1)-2\\y(1)=2-6\\y(1)=-4\\y_{vertex}=-4

Recall now that we can write the quadratic in what is called: "vertex form" using the coordinates (x_{vertex},y_{vertex)of the vertex as follows:

y-y_{vertex}=a\,(x-x_{vertex})^2

Then, for our case:

y-(-4)=2\,(x-1)^2\\y=2\,(x-1)^2-4

Then, for the quadratic equal to zero as requested in the problem, we have:

y=2\,(x-1)^2-4=0\\2\,(x-1)^2-4=0\\2\,(x-1)^2=4

5 0
3 years ago
Determine the horizontal vertical and slant asymptote y=x^2+2x-3/x-7
lilavasa [31]

Answer:

<h2>A.Vertical:x=7</h2><h2>Slant:y=x+9</h2>

Step-by-step explanation:

f(x)=\dfrac{x^2+2x-3}{x-7}\\\\vertical\ asymptote:\\\\x-7=0\qquad\text{add 7 to both sides}\\\\\boxed{x=7}\\\\horizontal\ asymptote:\\\\\lim\limits_{x\to\pm\infty}\dfrac{x^2+2x-3}{x-7}=\lim\limits_{x\to\pm\infty}\dfrac{x^2\left(1+\frac{2}{x}-\frac{3}{x^2}\right)}{x\left(1-\frac{7}{x}\right)}=\lim\limits_{x\to\pm\infty}\dfrac{x\left(1+\frac{2}{x}-\frac{3}{x^2}\right)}{1-\frac{7}{x}}=\pm\infty\\\\\boxed{not\ exist}

slant\ asymptote:\\\\y=ax+b\\\\a=\lim\limits_{x\to\pm\infty}\dfrac{f(x)}{x}\\\\b=\lim\limits_{x\to\pm\infty}(f(x)-ax)\\\\a=\lim\limits_{x\to\pm\infty}\dfrac{\frac{x^2+2x-3}{x-7}}{x}=\lim\limits_{x\to\pm\infty}\dfrac{x^2+2x-3}{x(x-7)}=\lim\limits_{x\to\pm\infty}\dfrac{x^2+2x-3}{x^2-7x}\\\\=\lim\limits_{x\to\pm\infty}\dfrac{x^2\left(1+\frac{2}{x}-\frac{3}{x^2}\right)}{x^2\left(1-\frac{7}{x}\right)}=\lim\limits_{x\to\pm\infty}\dfrac{1+\frac{2}{x}-\frac{3}{x^2}}{1-\frac{7}{x}}=\dfrac{1}{1}=1

b=\lim\limits_{x\to\pm\infty}\left(\dfrac{x^2+2x-3}{x-7}-1x\right)=\lim\limits_{x\to\pm\infty}\left(\dfrac{x^2+2x-3}{x-7}-\dfrac{x(x-7)}{x-7}\right)\\\\=\lim\limits_{x\to\pm\infty}\left(\dfrac{x^2+2x-3}{x-7}-\dfrac{x^2-7x}{x-7}\right)=\lim\limits_{x\to\pm\infty}\dfrac{x^2+2x-3-(x^2-7x)}{x-7}\\\\=\lim\limits_{x\to\pm\infty}\dfrac{x^2+2x-3-x^2+7x}{x-7}=\lim\limits_{x\to\pm\infty}\dfrac{9x-3}{x-7}=\lim\limits_{x\to\pm\infty}\dfrac{x\left(9-\frac{3}{x}\right)}{x\left(1-\frac{7}{x}\right)}

=\lim\limits_{x\to\pm\infty}\dfrac{9-\frac{3}{x}}{1-\frac{7}{x}}=\dfrac{9}{1}=9\\\\\boxed{y=1x+9}

8 0
3 years ago
A carpenter is building a rectangular bookcase with diagonal braces across the back as shown the Carpender knows that angle ADC
Rudik [331]
I think I have the diagram right.
Let ADB = x, and then BDC = x+32.
x+x+32 = 90
2x = 58
x = 29 = ADB
so BDC = 61
6 0
3 years ago
URGENT!!!
Deffense [45]

Answer:

I think it is c correct me if I'm wrong

6 0
3 years ago
Read 2 more answers
Other questions:
  • The value of the digit 9 is 2,107,954
    5·1 answer
  • Please help with math ASAP. Will give brainliest
    8·1 answer
  • How many packs of DVDs can you buy with 150 dollars if one pack costs 15 dollars ?
    10·1 answer
  • Can you write an equivalent fraction for 5/9 and 1/10 using the least common denominator?<br>​
    5·1 answer
  • I need help with this
    7·1 answer
  • Sanjeet bought a new car at the dealership for $28,000. It is estimated that the value of the new car will decrease 8% each year
    9·2 answers
  • If the area of the rectangle is 154 km2, then what is the value of the missing side?
    9·2 answers
  • What’s a real life example of dilation for geometry?
    10·2 answers
  • 2x+5y=50<br><br> Solve for x and then solve for y
    15·1 answer
  • No Links
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!