1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ExtremeBDS [4]
3 years ago
5

Simplify the expression. 3x-9y-5x-7y

Mathematics
2 answers:
Norma-Jean [14]3 years ago
7 0
3x - 9y - 5x - 7y =\ \textgreater \ \\ 

( 3x + - 5x ) +( - 9y + - 7y ) =
 \\  \\ = - 2x - 16y 
 \\  \\ 
Good Luck
emmasim [6.3K]3 years ago
5 0
3x - 9y - 5x - 7y

Combine like terms

( 3x + - 5x ) + ( - 9y + - 7y )

= - 2x - 16y
You might be interested in
HELPPPP PLEASEEEEE !!!!!What is the surface area of the composite solid?
Bingel [31]

Answer: answer C is correct or 1,808 meters squared

Step-by-step explanation:

4 0
3 years ago
Heeeelp pls i beg of you​
Marat540 [252]

Answer: 41.6%

Step-by-step explanation:

You divide the amount of trees 40ft or taller (10) by the total number of trees (24) so 10/24 = .416 (41.6%)

5 0
3 years ago
a regular hexagonal nut of side 1 cm and length 3 cm with a central hole of diameter 1 cm. 3 cm 1 cm 1 cm. Calculate the volume
Bogdan [553]

Answer:

  5.44 cm³

Step-by-step explanation:

The volume of the hexagonal nut can be found by multiplying the area of the end face by the length of the nut. The end face area is the difference between the area of the hexagon and the area of the hole.

The area of a hexagon with side length s is given by ...

  A = (3/2)√3·s²

For s=1 cm, the area is ...

  A = (3/2)√3(1 cm)² = (3/2)√3 cm²

__

The area of a circle is given by ...

  A = πr²

The radius of a circle with diameter 1 cm is 0.5 cm. Then the area of the hole is ...

  A = π(0.5 cm)² = 0.25π cm²

__

The volume is the face area multiplied by the length, so is ...

  V = Bh = ((3/2)√3 -0.25π)(3) . . . . . cm³

  V = (9/2)√3 -0.75π cm³ ≈ 5.44 cm³

The volume of the metal is about 5.44 cm³.

5 0
2 years ago
|. Identify the following Pōints of each values.Write your ans
Dmitry_Shevchenko [17]
<h2>✒️VALUE</h2>

\\ \quad  \begin{array}{c} \qquad \bold{Distance \: \green{ Formula:}}\qquad\\ \\ \boldsymbol{ \tt d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} \end{array}\\  \begin{array}{l} \\ 1.)\: \bold{Given:}\: \begin{cases}\tt D(- 5,6), E(2.-1),\textsf{ and }F(x,0) \\ \tt DF = EF \end{cases} \\ \\  \qquad\bold{Required:}\:\textsf{ value of }x \\ \\ \qquad \textsf{Solving for }x, \\ \\  \tt  \qquad DF = EF \\ \\  \implies\small \tt{\sqrt{(x -(- 5))^2 + (0 - 6)^2} = \sqrt{(x - 2)^2 + (0 - (-1))^2}} \\ \\   \implies\tt\sqrt{(x + 5)^2 + 36 } = \sqrt{(x - 2)^2 + 1 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies\tt (x + 5)^2 + 36 = (x - 2)^2 + 1 \\ \\  \implies\tt x^2 + 10x + 25 + 36 = x^2 - 4x + 4 + 1 \\ \\ \implies \tt x^2 + 10x + 61 = x^2 - 4x + 5 \\ \\   \implies\tt10x + 4x = 5 - 61 \\ \\   \implies\tt14x = -56 \\ \\  \implies \red{\boxed{\tt x = -4}}\end{array}  \\  \\  \\  \\\begin{array}{l} \\ 2.)\: \bold{Given:}\: \begin{cases}\tt P(6,-1), Q(-4,-3),\textsf{ and }R(0,y) \\ \tt PR = QR \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }y \\ \\  \qquad\textsf{Solving for }y, \\ \\  \qquad\tt PR = QR \\ \\  \implies \tt\small{\sqrt{(0 - 6)^2 + (y - (-1))^2} = \sqrt{(0 - (-4))^2 + (y - (-3))^2}} \\ \\   \implies\tt\sqrt{36 + (y + 1)^2} = \sqrt{16 + (y + 3)^2 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies \tt \: 36 + (y + 1)^2 = 16 + (y + 3)^2 \\ \\  \implies\tt 36 + y^2 + 2y + 1 = 16 + y^2 + 6y + 9 \\ \\  \implies \tt \: y^2 + 2y + 37 = y^2 + 6y + 25 \\ \\  \implies \tt \: 2y - 6y = 25 - 37 \\ \\ \implies \tt -4y = -12 \\ \\   \implies\red{\boxed{ \tt y = 3}} \end{array}  \\  \\  \\ \begin{array}{l} \\ 3.)\: \bold{Given:}\: \begin{cases}\: A(4,5), B(-3,2),\textsf{ and }C(x,0) \\ \: AC = BC \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }x \\ \\  \qquad\textsf{Solving for }x, \\ \\   \qquad\tt AC = BC \\ \\ \implies\tt\small{\sqrt{(x - 4)^2 + (0 - 5)^2} = \sqrt{(x - (-3))^2 + (0 - 2)^2}} \\ \\ \implies\tt\sqrt{(x - 4)^2 + 25} = \sqrt{(x + 3)^2 + 4} \\ \\ \textsf{Squaring both sides yields} \\ \\ \implies\tt\:(x - 4)^2 + 25 = (x + 3)^2 + 4 \\ \\ \implies\tt\:x^2 - 8x + 16 + 25 = x^2 + 6x + 9 + 4 \\ \\ \implies\tt\:x^2 - 8x + 41 = x^2 + 6x + 13 \\ \\ \implies\tt-8x - 6x = 13 - 41 \\ \\\implies\tt -14x = -28 \\ \\ \implies\red{\boxed{\tt\:x = 2}} \end{array}

#CarryOnLearning

#BrainlyMathKnower

#5-MinutesAnswer

7 0
2 years ago
Hudson invested $8,400 in an account paying an interest rate of 5.4% compounded quarterly. Assuming no deposits or withdrawals a
maw [93]

The answer to the problem is 16870

4 0
3 years ago
Other questions:
  • Use polar coordinates to find the limit. [if (r, θ) are polar coordinates of the point (x, y) with r ≥ 0, note that r → 0 as (x,
    11·1 answer
  • How do I find X in the simplest radical form
    10·1 answer
  • What is 1/7 times 2/3?
    7·2 answers
  • Gary took 7 hours
    10·1 answer
  • Given the function f(x) = 2(x + 4), find x if f(x) = 20.
    13·1 answer
  • Mountains are often measured by the distance they rise above sea level. Mount Everest Washington rises more than 1 1/10 miles ab
    7·1 answer
  • What is 5/100 written as a decimal
    13·2 answers
  • At Silver Gym, membership is $45 per month, and personal training sessions are $35 each.
    10·1 answer
  • Here is data on the percentage of 200 hotels in each of the three large cities across the world on whether minibar charges are c
    9·1 answer
  • Malachy and Paul win some money and share it in the ratio 2:1. Malachy gets £24 more than Paul. How much did they get altogether
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!