Answer:
power, P = 90 hp
Explanation:
It is given that,
Mass of the car, m = 1500 kg
Initial velocity of car, u = 0
Final velocity of car, v = 25 m/s
Time taken, t = 7 s
We need to find the average power delivered by the engine. Work done divided by total time taken is called power delivered by the engine. It is given by :

According to work- energy theorem, the change in kinetic energy of the energy is equal to work done i.e.


P = 66964.28 watts
Since, 1 hp = 746 W
So, P = 89.76 hp
or
P = 90 hp
So, the average power delivered by the engine is 90 hp. Hence, the correct option is (E) " 90 hp".
Answer:
the Jack speed is greater than the Nas speed
v₁ = 2.08 m / s > v2 = 1.85 m / s
Explanation:
For this exercise we can find the average speed of each of the boys, the average speed is defined as the displacement in the time interval
v = x / t
Jack.
It tells us that it travels x = 15 km in a time of t = 2 h
let's reduce the magnitudes to the SI system
x = 15 km (1000 m / 1 km) = 15 10³ m
t = 2 h (3600 s / 1 h) = 7200 s
let's calculate
v₁ = 15 10³/7200
v₁ = 2.08 m / s
Nas travels a distance of x = 10 km in a time of t = 1.5 h
x = 10 km = 10 10³ m
t = 1.5 h (3600s / 1h) = 5400 s
let's calculate the speed
v2 = 10 10³/5400
v2 = 1.85 m / s
From these results we can see that the Jack speed is greater than the Nas speed
Answer:
C) 100N
Explanation:
Formula for calculating the Weight of an object is expressed as;
Weight = mass × acceleration due to gravity
Given
Mass of the object = 10kg
Acceleration due to gravity = 9.81m/s²
Substitute into the formula above
Weight = 10×9.81
Weight = 98.1N
Hence the approximate weight of the object is 100N
Answer:
F = 789 Newton
Explanation:
Given that,
Speed of the car, v = 10 m/s
Radius of circular path, r = 30 m
Mass of the passenger, m = 60 kg
To find :
The normal force exerted by the seat of the car when the it is at the bottom of the depression.
Solution,
Normal force acting on the car at the bottom of the depression is the sum of centripetal force and its weight.



N = 788.6 Newton
N = 789 Newton
So, the normal force exerted by the seat of the car is 789 Newton.