Answer:
Explanation:
A fire alarm notification appliance is an active fire protection component of a fire alarm system. The primary function of the notification appliance is to alert persons at risk.
If want the audible public mode signal to be hear clearly then, we need to have a sound level that is at least 15dB above the average ambient sound level or 5dB above the maximum sound level of at least 1minute
In this case the,
The average ambient sound level is 62dB,
And the maximum sound level is 68dB
Then, the public mode signal should be at least
1. 62dB+ 15dB=77dB
Or
2. 68dB +5dB =73dB.
Then the public mode signal hearing must be at least 77dB.
Normal reaction force on the block while it is at rest on the inclined plane is given as

here we know that
m = 46 kg

now we will have

now the limiting friction or maximum value of static friction on the block will be given as


Above value is the maximum value of force at which block will not slide
Now the weight of the block which is parallel to inclined plane is given as

here we know that

Now since the weight of the block here is less than the value of limiting friction force and also the block is at rest then the frictional force on the block is static friction and it will just counter balance the weight of the block along the inclined plane.
So here <u>friction force on the given block will be same as its component on weight which is 218.55 N</u>
Answer:
Newton's First Law states that an object will remain at rest or in uniform motion in a straight line unless acted upon by an external force.
Explanation:
The energy transferred to the spring is given by:

where
k is the spring constant
x is the elongation of the spring with respect its initial length
Let's convert the data into the SI units:


so now we can use these data inside the equation ,to find the energy transferred to the spring:
Complete Question
A spherical wave with a wavelength of 2.0 mm is emitted from the origin. At one instant of time, the phase at r_1 = 4.0 mm is π rad. At that instant, what is the phase at r_2 = 3.5 mm ? Express your answer to two significant figures and include the appropriate units.
Answer:
The phase at the second point is 
Explanation:
From the question we are told that
The wavelength of the spherical wave is 
The first radius is 
The phase at that instant is 
The second radius is 
Generally the phase difference is mathematically represented as

this can also be expressed as

So we have that

substituting values


