1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLga [1]
3 years ago
6

Aiden buys two bags of chips at $1.09 each and a 20 ounce soda for $1.20 at the gas station.He knows that the state tax is 5.5.

How much change will he receive from a $5 bill?
Mathematics
1 answer:
Natalka [10]3 years ago
7 0
Aiden will receive $1.43 from a $5 bill.

If the state tax is 5.5%, you can use the equation below to solve for the total cost, <em>t</em>.

<em>t</em> = 1.055 (2 × 1.09 + 1.20)
<em>t</em> = 1.055 (2.18 + 1.20)
<em /><em>t </em>= 1.055 (3.38)
<em>t </em>= 3.5659

You can round 3.5659 to $3.57. Finally, you subtract 3.57 from 5 to find the amount of change Aiden will receive, <em>c</em><em />.

<em>c </em>= 5 - 3.57
<em>c </em>= 1.43


You might be interested in
Can anybody help plzz?? 65 points
Yakvenalex [24]

Answer:

\frac{dy}{dx} =\frac{-8}{x^2} +2

\frac{d^2y}{dx^2} =\frac{16}{x^3}

Stationary Points: See below.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties

<u>Calculus</u>

Derivative Notation dy/dx

Derivative of a Constant equals 0.

Stationary Points are where the derivative is equal to 0.

  • 1st Derivative Test - Tells us if the function f(x) has relative max or mins. Critical Numbers occur when f'(x) = 0 or f'(x) = undef
  • 2nd Derivative Test - Tells us the function f(x)'s concavity behavior. Possible Points of Inflection/Points of Inflection occur when f"(x) = 0 or f"(x) = undef

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{8}{x} +2x

<u>Step 2: Find 1st Derivative (dy/dx)</u>

  1. Quotient Rule [Basic Power]:                    f'(x)=\frac{0(x)-1(8)}{x^2} +2x
  2. Simplify:                                                      f'(x)=\frac{-8}{x^2} +2x
  3. Basic Power Rule:                                     f'(x)=\frac{-8}{x^2} +1 \cdot 2x^{1-1}
  4. Simplify:                                                     f'(x)=\frac{-8}{x^2} +2

<u>Step 3: 1st Derivative Test</u>

  1. Set 1st Derivative equal to 0:                    0=\frac{-8}{x^2} +2
  2. Subtract 2 on both sides:                         -2=\frac{-8}{x^2}
  3. Multiply x² on both sides:                         -2x^2=-8
  4. Divide -2 on both sides:                           x^2=4
  5. Square root both sides:                            x= \pm 2

Our Critical Points (stationary points for rel max/min) are -2 and 2.

<u>Step 4: Find 2nd Derivative (d²y/dx²)</u>

  1. Define:                                                      f'(x)=\frac{-8}{x^2} +2
  2. Quotient Rule [Basic Power]:                  f''(x)=\frac{0(x^2)-2x(-8)}{(x^2)^2} +2
  3. Simplify:                                                    f''(x)=\frac{16}{x^3} +2
  4. Basic Power Rule:                                    f''(x)=\frac{16}{x^3}

<u>Step 5: 2nd Derivative Test</u>

  1. Set 2nd Derivative equal to 0:                    0=\frac{16}{x^3}
  2. Solve for <em>x</em>:                                                    x = 0

Our Possible Point of Inflection (stationary points for concavity) is 0.

<u>Step 6: Find coordinates</u>

<em>Plug in the C.N and P.P.I into f(x) to find coordinate points.</em>

x = -2

  1. Substitute:                    f(-2)=\frac{8}{-2} +2(-2)
  2. Divide/Multiply:            f(-2)=-4-4
  3. Subtract:                       f(-2)=-8

x = 2

  1. Substitute:                    f(2)=\frac{8}{2} +2(2)
  2. Divide/Multiply:            f(2)=4 +4
  3. Add:                              f(2)=8

x = 0

  1. Substitute:                    f(0)=\frac{8}{0} +2(0)
  2. Evaluate:                      f(0)=\text{unde} \text{fined}

<u>Step 7: Identify Behavior</u>

<em>See Attachment.</em>

Point (-2, -8) is a relative max because f'(x) changes signs from + to -.

Point (2, 8) is a relative min because f'(x) changes signs from - to +.

When x = 0, there is a concavity change because f"(x) changes signs from - to +.

3 0
3 years ago
Complete the number line by using the counting up startegy to find 341 -273=
Vinvika [58]
The answer is 68 hope this helps
7 0
3 years ago
#1: Consider the list of golf scores: 71, 68, 72, 79, 80, 77, 84, 70, 92. What is
Nesterboy [21]

Answer:none

Step-by-step explanation:

8 0
3 years ago
A rectangular playground has a width of 540 feet and a length of 810 feet. Martina makes a scale model of the playground using a
abruzzese [7]

Answer:

72 and 108

Step-by-step explanation:

540/30= 18 *4 = 72

and

810/30= 27*4=108

4 0
3 years ago
PLEASE HELP MEEEEEEEE ILL MARK YOU BRAINLIEST
Andre45 [30]

Answer:

16.8

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • Two points on the graphs of s = 5m + 8 are (___, 23) and (8, ___). *
    15·1 answer
  • Solve the equation. <br><br> -2 = 3/5x + 1
    9·2 answers
  • Which equation does the graph of the systems of equations solve? It's a quadratic graph opening down and quadratic graph opening
    10·1 answer
  • The sum of 41 and w is 26
    13·2 answers
  • What is the missing operation? 48?(-8)=(-6)​
    6·1 answer
  • Explain how you can find 3 x 584 using expanded form
    12·2 answers
  • A deli served 1,288 sandwiches in 4 weeks. If it served the same number of sandwiches each day, how many sandwiches did it serve
    11·1 answer
  • Part A and B Please 10 points
    13·2 answers
  • The function shown crosses the y-axis at....<br><br> (Pls help me ill give brainliest)
    15·1 answer
  • Are these lines parallel or perpendicular? 2y=-3x=5 and y=3/2-6
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!