Answer:
hope it helps...
Explanation:
Along the third type of plate boundary, two plates move laterally and pass each other along giant fractures in Earth's crust. Transform faults are so named because they are linked to other types of plate boundaries. The majority of transform faults link the offset segments of oceanic ridges.
<span>It generally does not mean that there is double the oxygen, but in this case there is double, because the subscript number tells how many atoms of that element are in a particle. In this case, there are two of the oxygen, hence the DI-oxide verbiage, and one of the carbon. When there is only one, it's MONOxide, to indicate only one atom.</span>
For the answer to the question above, well presumably because the exact concentration of the composition KMnO4 solution doesn't matter. <span>If the concentration of the KMnO4 solution is important (usually in titrations etc.) then it is not allowed to use a wet bottle. The water in the bottle will dilute the KMnO4 solution and change the concentration of the said compound.</span>
Answer:
A. Predicting data that fall beyond a known data point
Explanation:
Extrapolating is unreliable because you are predicting data outside of the data range - anything could happen for the data to stop following the trend or pattern
Answer:
21.6 g
Explanation:
The reaction that takes place is:
First we<u> convert the given masses of both reactants into moles</u>, using their <em>respective molar masses</em>:
- 9.6 g CH₄ ÷ 16 g/mol = 0.6 mol CH₄
- 64.9 g O₂ ÷ 32 g/mol = 2.03 mol O₂
0.6 moles of CH₄ would react completely with (2 * 0.6) 1.2 moles of O₂. As there are more O₂ moles than required, O₂ is the reactant in excess and CH₄ is the limiting reactant.
Now we <u>calculate how many moles of water are produced</u>, using the <em>number of moles of the limiting reactant</em>:
- 0.6 mol CH₄ *
= 1.2 mol H₂O
Finally we<u> convert 1.2 moles of water into grams</u>, using its <em>molar mass</em>:
- 1.2 mol * 18 g/mol = 21.6 g