Answer:
Crumple zones are designed to absorb and redistribute the force of a collision. ... Also known as a crush zone, crumple zones are areas of a vehicle that are designed to deform and crumple in a collision. This absorbs some of the energy of the impact, preventing it from being transmitted to the occupants.
Answer:

Explanation:
We are asked to find the cyclist's initial velocity. We are given the acceleration, final velocity, and time, so we will use the following kinematic equation.

The cyclist is acceleration at 1.2 meters per second squared. After 10 seconds, the velocity is 16 meters per second.
= 16 m/s - a= 1.2 m/s²
- t= 10 s
Substitute the values into the formula.

Multiply.


We are solving for the initial velocity, so we must isolate the variable
. Subtract 12 meters per second from both sides of the equation.


The cyclist's initial velocity is <u>4 meters per second.</u>
Answer:

Explanation:
The Coulomb's law states that the magnitude of the electrostatic force between two charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them:

In this case, we have
:

Answer:
The depth of the water at this point is 0.938 m.
Explanation:
Given that,
At one point
Wide= 16.0 m
Deep = 3.8 m
Water flow = 2.8 cm/s
At a second point downstream
Width of canal = 16.5 m
Water flow = 11.0 cm/s
We need to calculate the depth
Using Bernoulli theorem

Put the value into the formula



Hence, The depth of the water at this point is 0.938 m.
Let's apply an equation of equilibrium to the situation: The sum of the moments about the left end of the board must equal 0.
We have three moments to add. Positive force values indicate upward direction and negative values indicate downward direction. All distances given below are measured to the right side of the left end of the board:
- The weight of the board, -125N, located at 2m (center of the board due to its uniform density)
- The tension in the right chain, +250N, located at 4m
- The weight of the person, -500N, located at a distance "x"
The sum of the moments must equal 0 and is given by:
ΣFx = 0
F is the magnitude of force, x = distance from the left end of the board
Plug in all of the force and distance values and solve for x:
ΣFx = 250(4) - 125(2) - 500x = 0
500x = 750
x = 1.5m