Answer:
the maximum allowable current is 7302.967 amperl
Explanation:
The computation of the maximum allowable current is shown below;
Force F = mean ÷ 4π 2 I_1 I_2 ÷d × ΔL
200 N = (10)^-7 (2I × I) ÷ 0.08 × 1.5
200 = 3.75 × 10^-6 I^2
I = √200 ÷ √ 3.75 × 10^-6
= 7302.967 amperl
Hence, the maximum allowable current is 7302.967 amperl
Basically we applied the above formula
Answer:
the final pressure of the gas is 60 kPa.
Explanation:
Given;
initial pressure of the gas, P₁ = 50 kPa = 50,000 Pa
initial temperature of the gas, T₁ = 27⁰ C = 27 + 273 = 300 k
final temperature of the gas, T₂ = 87⁰ C = 87 + 273 = 360 K
Let the final pressure of the gas = P₂
Apply pressure law;

Therefore, the final pressure of the gas is 60 kPa.
Answer:
37.7m/s: principle of conservation of momentum
Explanation:
The principle to make use of is the principle of conservation of momentum which States that the sum of momentum of bodies before collision is equal to the sum of momentum of bodies after collision. This bodies will move with the same velocity after collision.
Momentum = Mass × velocity
For car of mass 2200kg moving with velocity 33m/s:
Momentum of car before collision = 2200×33
= 72,600kgm/s
For the truck of mass 4500kg;
Momentum = 4500 ×(22-(-18)
= 4500×40
= 180000kgm/s
After collision, their momentum is:
Momentum after collision = (2200+4500)v
= 6700v
Using the principle above to get the common velocity v we have
72600+180000 = 6700v
252600 = 6700v
v = 252600/6700
v = 37.7m/s
Here are the methods that I think that kinesiologists might use to study physical activity. These are exercise and Skilled movement. According to Kinesiology, physical activity is any movement that is intentional, voluntary, and is directed to achieving a desired goal. Hope this answers your question.