A scientific hypothesis must be testable, but there is a much stronger requirement that a testable hypothesis must meet before it can really be considered <span>scientific</span>
Answer: a. Place the object on one side of a lever at a known distance away from the fulcrum. Place known masses on the other side of the fulcrum so that they are also paced on the lever at known distance from the fulcrum. Move the known masses to a known distance such that the lever is in static equilibrium.
d. Place the object on the end of a vertically hanging spring with a known spring constant. Allow the spring to stretch to a new equilibrium position and measure the distance the spring is stretched from its original equilibrium position.
Explanation:
The options are:
a. Place the object on one side of a lever at a known distance away from the fulcrum. Place known masses on the other side of the fulcrum so that they are also paced on the lever at known distance from the fulcrum. Move the known masses to a known distance such that the lever is in static equilibrium.
b. Place the object on a surface of negligible friction and pull the object horizontally across the surface with a spring scale at a non constant speed such that a motion detector can measure how the objects speed as a function of time changes.
c. Place the object on a surface that provides friction between the object and the surface. Use a surface such that the coefficient of friction between the object and the surface is known. Pull the object horizontally across the surface with a spring scale at a nonconstant speed such that a motion detector can measure how the objects speed as a function of time changes.
d. Place the object on the end of a vertically hanging spring with a known spring constant. Allow the spring to stretch to a new equilibrium position and measure the distance the spring is stretched from its original equilibrium position.
Gravitational mass simply has to do with how the body responds to the force of gravity. From the options given, the correct options are A and D.
For option A, by balancing the torque, the mass can be calculated. Since the known mass and the distance has been given here, the unknown mass can be calculated.
For option D, here the gravitational force can be balanced by the spring force and hence the mass can be calculated.
Moving fan has rotational kinetic energy
Non moving fan has no energy since it is in rest
Polarization of light is achieved by passing the light through a polarizer which causes the light to vibrate in only one direction.
<h3>What is polarization of light?</h3>
The question is unclear but I will try to explain what is meant by polarization of light. We know that light is an electromagetic wave and vibrates in all directions.
The polarization of light enables light to vibrate in a specified direction. This is achieved by passing the light through a polarizer which causes the light to vibrate in only one direction.
Learn more about polarization of light: brainly.com/question/17159388
It doesn't matter what the object's initial velocity is, or how long
the acceleration lasts. All that matters is the object's mass and
acceleration.
Force = (mass) x (acceleration) =
(5kg) x (15 m/s²) =
75 kg-m/s² = <em>75 newtons .</em>