Solution:
The Given Rectangle having dimensions
Length = 80 cm
Breadth = 50 cm
Let the Six squares which has been cut from this rectangle have side of length a cm.
Area of each square = (Side)²= a²
Area of 6 Identical Squares = 6 × a²= 6 a²
If four squares are cut from four corners and two along Length,
then , Length of Box = (80 - 3 a)cm, Breadth of Box = (50 - 2 a)cm, Height = a cm
Volume of Box =V = Length × Breadth × Height
V = (80 - 3 a)× (50 - 2 a)× a
V = 4000 a - 310 a² + 6 a³
For Maximum Volume
V'= 0 , where V' = Derivative of V with respect to a.
V'= 4000 - 620 a + 18 a²
V' =0
18 a² - 620 a + 4000= 0
9 a² - 310 a + 2000=0
using determinant method
cm
V"=1 8 a - 310 = -ve
which shows , when a = 8.6 cm , volume is maximum.
So, V = 4000×8.6 - 310×(8.6)²+6×(8.6)³=15288.736 cm³
OR
If four squares are cut from four corners and two along Breadth,
then , Length of Box = (80 - 2 a)cm, Breadth of Box = (50 - 3 a)cm, Height = a cm
Volume of Box =V = Length × Breadth × Height
V = (80 - 2 a)× (50 - 3 a)× a
V = 4000 a - 340 a² + 6 a³
For Maximum Volume
V'= 0 , where V' = Derivative of V with respect to a.
V'= 4000 - 680 a + 18 a²
V' =0
18 a² - 680 a + 4000= 0
9 a² - 340 a + 2000=0
Using Determinant method
cm
V"=18 a -340= -ve value when a = 7.6 cm, shows volume is maximum when a = 7.6 cm
V= 4000×7.6 -340 × (7.6)² +6× (7.6)³=13395.456 cubic cm