Step-by-step explanation:
![area \: of \: rectangle \: = 60 \: {yards}^{2} \\ \therefore \: (w + 4) \times \: w = 60\\ \\ \therefore \: {w}^{2} + 4w -60 = 0 \\ \\ \therefore \: {w}^{2} + 10w - 6w -60 = 0 \\ \\ \therefore \: w({w} + 10) - 6(w + 10)= 0 \\ \\ \therefore \: ({w} + 10) (w- 6)= 0 \\ \therefore \: {w} + 10 = 0 \: or \: w- 6 = 0 \\ \therefore \: {w} = - 10 \: or \: w = 6 \\ \because \: sides \: of \: rectangle \: cant \: be \: negative \\ \therefore \: w \neq \: - 10 \\ \\ \therefore \: w = 6 \\ \\ \therefore \: w + 4 = 6 + 4 = 10 \\ \\ length \: of \: rectangle \: = 10 \: yards.](https://tex.z-dn.net/?f=area%20%5C%3A%20of%20%5C%3A%20rectangle%20%5C%3A%20%20%3D%2060%20%5C%3A%20%20%7Byards%7D%5E%7B2%7D%20%20%5C%5C%20%20%5Ctherefore%20%5C%3A%20%28w%20%2B%204%29%20%5Ctimes%20%5C%3A%20w%20%3D%2060%5C%5C%20%20%5C%5C%20%20%5Ctherefore%20%5C%3A%20%20%7Bw%7D%5E%7B2%7D%20%20%2B%204w%20-60%20%3D%200%20%5C%5C%20%20%5C%5C%20%20%5Ctherefore%20%5C%3A%20%7Bw%7D%5E%7B2%7D%20%20%2B%2010w%20-%206w%20-60%20%3D%200%20%5C%5C%20%20%5C%5C%20%20%20%5Ctherefore%20%5C%3A%20w%28%7Bw%7D%20%2B%2010%29%20-%206%28w%20%20%2B%2010%29%3D%200%20%5C%5C%20%20%5C%5C%20%20%5Ctherefore%20%5C%3A%20%28%7Bw%7D%20%2B%2010%29%20%28w-%206%29%3D%200%20%5C%5C%20%5Ctherefore%20%5C%3A%20%7Bw%7D%20%2B%2010%20%3D%200%20%5C%3A%20or%20%5C%3A%20w-%206%20%3D%200%20%5C%5C%20%20%5Ctherefore%20%5C%3A%20%7Bw%7D%20%20%20%3D%20-%20%2010%20%20%5C%3A%20or%20%5C%3A%20w%20%3D%20%206%20%20%5C%5C%20%20%5Cbecause%20%5C%3A%20sides%20%5C%3A%20of%20%5C%3A%20rectangle%20%5C%3A%20cant%20%5C%3A%20be%20%5C%3A%20negative%20%5C%5C%20%20%5Ctherefore%20%5C%3A%20w%20%5Cneq%20%5C%3A%20%20%20%20-%2010%20%5C%5C%20%20%5C%5C%20%5Ctherefore%20%5C%3A%20w%20%3D%206%20%5C%5C%20%20%5C%5C%20%5Ctherefore%20%5C%3A%20w%20%2B%204%20%3D%206%20%2B%204%20%3D%2010%20%5C%5C%20%20%5C%5C%20length%20%5C%3A%20of%20%5C%3A%20rectangle%20%5C%3A%20%20%3D%2010%20%5C%3A%20yards.)
Looks like you have most of the details already, but you're missing one crucial piece.
is parameterized by
![\vec r(u,v)=\langle u\cos3v,u\sin3v,v\rangle](https://tex.z-dn.net/?f=%5Cvec%20r%28u%2Cv%29%3D%5Clangle%20u%5Ccos3v%2Cu%5Csin3v%2Cv%5Crangle)
for
and
, and a normal vector to this surface is
![\dfrac{\partial\vec r}{\partial u}\times\dfrac{\partial\vec r}{\partial v}=\left\langle\sin3v,-\cos3v,3u\right\rangle](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%5Cvec%20r%7D%7B%5Cpartial%20u%7D%5Ctimes%5Cdfrac%7B%5Cpartial%5Cvec%20r%7D%7B%5Cpartial%20v%7D%3D%5Cleft%5Clangle%5Csin3v%2C-%5Ccos3v%2C3u%5Cright%5Crangle)
with norm
![\left\|\dfrac{\partial\vec r}{\partial u}\times\dfrac{\partial\vec r}{\partial v}\right\|=\sqrt{\sin^23v+(-\cos3v)^2+(3u)^2}=\sqrt{9u^2+1}](https://tex.z-dn.net/?f=%5Cleft%5C%7C%5Cdfrac%7B%5Cpartial%5Cvec%20r%7D%7B%5Cpartial%20u%7D%5Ctimes%5Cdfrac%7B%5Cpartial%5Cvec%20r%7D%7B%5Cpartial%20v%7D%5Cright%5C%7C%3D%5Csqrt%7B%5Csin%5E23v%2B%28-%5Ccos3v%29%5E2%2B%283u%29%5E2%7D%3D%5Csqrt%7B9u%5E2%2B1%7D)
So the integral of
is
![\displaystyle\iint_\sigma f(x,y,z)\,\mathrm dA=\boxed{\int_0^{2\pi/3}\int_0^7(u^2+v^2)\sqrt{9u^2+1}\,\mathrm du\,\mathrm dv}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ciint_%5Csigma%20f%28x%2Cy%2Cz%29%5C%2C%5Cmathrm%20dA%3D%5Cboxed%7B%5Cint_0%5E%7B2%5Cpi%2F3%7D%5Cint_0%5E7%28u%5E2%2Bv%5E2%29%5Csqrt%7B9u%5E2%2B1%7D%5C%2C%5Cmathrm%20du%5C%2C%5Cmathrm%20dv%7D)
Answer:
The first and the second equation is flipped... meaning you have to switch their places
Step-by-step explanation:
I think I did this before so good luck...