Both cars are canceling out the energy of each other. The energy that is left over because one car has a bigger kinetic energy is the energy that is going to move BOTH the cars.
First Car : <em>0.5 * 2000kg * 3m/s^2 = 10.24 KJ</em>
Second Car :<em> 0.5 * 2000kg * 2m/s^2 = 4 KJ</em>
Leftover Energy : <em>10.24 KJ - 4 KJ = 6.24 KJ
</em>
Movement of BOTH cars :<em /><em>
6.24 = 4000kg * v^2
</em>v = √(6.24 / 4000) =0.04 m/s = 4 cm/s
Answer:
Speed is a "scalar" quantity
(C) is the correct answer
An object could travel at 10 m/s to some point and then return to the origin at 10 m/s for an average speed of 10 m/s, however it's displacement over that time would be zero for a net velocity of zero.
Answer:
Given:
Mass of elephant = 5240 kg
The initial speed of the elephant = 4.55 m/s
Mass of the rubber ball, m, = 0.15 kg
Inital speed of the rubber ball, v = 7.81 m/s
On substitution in
=
+ ![[\frac{m_{2}-m_{1}}{m_{1}+m_{2} } ] v_{2f}](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bm_%7B2%7D-m_%7B1%7D%7D%7Bm_%7B1%7D%2Bm_%7B2%7D%20%20%7D%20%5D%20v_%7B2f%7D)
=
+ ![[\frac{0.15_{}-5240_{}}{5240_{}+0.15_{} } ] (7.81_{})](https://tex.z-dn.net/?f=%5B%5Cfrac%7B0.15_%7B%7D-5240_%7B%7D%7D%7B5240_%7B%7D%2B0.15_%7B%7D%20%20%7D%20%5D%20%287.81_%7B%7D%29)
a) The negatıve sign shows that the ball bounces back in the direction opposite to the incident
b) it is clear that the velocity of the ball increases and therefore it is kinetic energy
. The ball gains kinetic energy from the elephant.
I believe the correct answer is true. Mechanical waves use matter to transfer energy. It <span> is a </span>wave<span> that is an oscillation of matter, and therefore transfers energy through a medium. Hope this answers the question. Have a nice day.</span>
Answer:
<h3>
The area of second coil is ≅ 0.025 
</h3>
Explanation:
Given :
No. of turns in the first coil 
No. of turns in the second coil 
Area of first coil 
According to the law of electromagnetic induction,
Induced emf =
Where
magnetic flux.
Since given in question emf of both coil is same so we compare above equation.




Therefore, the area of second coil is ≅ 0.025 