1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddika [18.5K]
2 years ago
8

I don’t know if these are correct please help Will mark brainliest :)

Physics
1 answer:
miv72 [106K]2 years ago
5 0

<>"Topographic maps conventionally show topography, or land contours, by means of contour lines. Contour lines are curves that connect contiguous points of the same altitude (isohypse). In other words, every point on the marked line of 100 m elevation is 100 m above mean sea level."<> I hope this helps.

You might be interested in
Each driver has mass 79.0 kg. Including the masses of the drivers, the total masses of the vehicles are 800 kg for the car and 4
Mademuasel [1]

Answer:

Force exerted on the car driver by the seatbelt = 8139.4 N = 8.14 kN

Force exerted on the truck driver by the seatbelt = 1628.2 N = 1.63 kN

It is evident that the driver of the smaller vehicle has it worse. The car driver is in way more danger in this perfectly inelastic head-on collision with a bigger vehicle (the truck).

Explanation:

First of, we calculate the velocity of the vehicles after collision using the law of conservation of Momentum

Momentum before collision = Momentum after collision

Since the collision of the two vehicles was described as a head-on collision, for the sake of consistent convention, we will take the direction of the velocity of the bigger vehicle (the truck) as the positive direction and the direction of the car's velocity automatically is the negative direction.

Velocity of the truck before collision = 6.80 m/s

Velocity of the car before collision = -6.80 m/s

Let the velocity of the inelastic unit of vehicles after collision be v

Momentum before collision = (4000)(6.80) + (800)(-6.80) = 27200 - 5440 = 21,760 kgm/s

Momentum after collision = (4000 + 800)(v) = (4800v) kgm/s

Momentum before collision = Momentum after collision

21760 = 4800v

v = (21760/4800)

v = 4.533 m/s (in the direction of the big vehicle (the truck)

So, we then apply Newton's second law of motion which explains that the magnitude change in momentum is equal to the magnitude of impulse.

|Impulse| = |Change in momentum|

But Impulse = (Force exerted on each driver by the seatbelt) × (collision time) = (F×t)

Change in momentum = (Momentum after collision) - (Momentum before collision)

So, for the driver of the truck

Initial velocity = 6.80 m/s (the driver moves with the velocity of the truck)

Final velocity = 4.533 m/s

Change in momentum of the truck driver = (79)(6.80) - (79)(4.533) = 179.1 kgm/s

(F×t) = 179.1

F × 0.110 = 179.1

F = (179.1/0.11)

F = 1628.2 N = 1.63 kN

So, for the driver of the car

Initial velocity = -6.80 m/s (the driver moves with the velocity of the car)

Final velocity = 4.533 m/s

Change in momentum of the car driver = (79)(-6.80) - (79)(4.533) = -895.3 kgm/s

(F×t) = |-895.3|

F × 0.110 = 895.3

F = (895.3/0.11)

F = 8139.4 N = 8.14 kN

Hope this Helps!!!

3 0
3 years ago
Help
malfutka [58]
The answer for this is 1200N
6 0
2 years ago
A car with a total mass of 1800 kg (including passengers) is driving down a washboard road with bumps spaced 4.9 m apart. The ri
Drupady [299]

Answer:

k = 9.6 x 10^5 N/m or 9.6 kN/m

Explanation:

First, we need to use the expression to calculate the spring constant which is:

w² = k/m

Solving for k:

k = w²*m

To get the angular velocity:

w = 2πf

The problem is giving the linear velocity of the car which is 5.7 m/s. With this we can calculate the frequency of the car:

f = V/x

f = 5.7 / 4.9 = 1.16 Hz

Now the angular velocity:

w = 2π*1.16

w = 7.29 rad/s

Finally, solving for k:

k = (7.29)² * 1800

k = 95,659.38 N/m

In two significant figures it'll ve 9.6 kN/m

5 0
3 years ago
Read 2 more answers
Suppose a capacitor is fully charged by a battery and then disconnected from the battery. The positive plate has a charge +q and
dimaraw [331]

Answer:-q

Explanation:

Given

Capacitor is charged to a battery and capacitor acquired a charge of q i.e.

+q on Positive Plate and -q on negative Plate.

If the plate area is doubled and the plate separation is reduced to half its initial separation then capacitor becomes four times of initial value because capacitor is given by

c=\epsilon_0 \cdot \frac{A}{d}

where A=area of capacitor plate

d=Separation between plates

This change in capacitance changes the Potential such that new charge on the negative plate will remain same -q

8 0
2 years ago
Which country had the largest population in 1997
nignag [31]
China i hope this helped
6 0
2 years ago
Other questions:
  • An 30-turn coil has square loops measuring 0.341 m along a side and a resistance of 3.61 Ω. It is placed in a magnetic field tha
    14·1 answer
  • How does an understanding of plate motion help scientists
    13·1 answer
  • Where is relative time recorded
    7·1 answer
  • The more _________ an electron has, the further away it can be from the nucleus. mass
    12·2 answers
  • 2 differences between calorimeter and thermometer ?
    9·1 answer
  • A 60 kg student is standing atop a spring in an elevator that is accelerating upward at 3.0 m/s2. The spring constant is 2.5 x 1
    13·1 answer
  • If you detected radio signals with an average wavelength of 67 cm and suspected that they came from a civilization on a distant
    13·1 answer
  • 4. Mrs. Parker was married to her husband for
    15·1 answer
  • A copper wire has a circular cross section with a radius of 1.25 mm. If the wire carries a current of 3.70 A, find the drift spe
    9·1 answer
  • PLEASE HELP WITH THE 6 FOLLOWING SCIENCE QUESTIONS (the topic is circuit symbols and equations):
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!