Answer:
-$2.63
Step-by-step explanation:
Calculation for the expected profit for one spin of the roulette wheel with this bet
Based on the information given you bet $50 on 00 while the standard roulette has 38 possible outcomes which means that the probability or likelihood of getting 00 will be 1/38.
Therefore when we get an 00, we would get the amount of $1,750 with a probability of 1/38 and in a situation where were we get something other than 00 this means we would lose $50 with a probability of 37/38.
Now let find the Expected profit using this formula
Expected profit = sum(probability*value) -sum(probability*value)
Let plug in the formula
Expected profit =($1,750 * 1/38) - ($50 * 37/38)
Expected profit=($1,750*0.026315)-($50×0.973684)
Expected profit= 46.05 - 48.68
Expected profit = - $2.63
Therefore the expected profit for one spin of the roulette wheel with this bet will be -$2.63
Answer:
answer is of left to right
16x^14/(36x^2)=4x^12/9
(3^3)×(x^5)×y÷4
-9a^3(b^5)
We use P = i•e^rt for exponential population growth, where P = end population, i = initial population, r = rate, and t = time
P = 2•i = 2•15 = 30, so 30 = 15 [e^(r•1)],
or 30/15 = 2 = e^(r)
ln 2 = ln (e^r)
.693 = r•(ln e), ln e = 1, so r = .693
Now that we have our doubling rate of .693, we can use that r and our t as the 12th hour is t=11, because there are 11 more hours at the end of that first hour
So our initial population is again 15, and P = i•e^rt
P = 15•e^(.693×11) = 15•e^(7.624)
P = 15•2046.94 = 30,704
Answer:under is answer
Step-by-step explanation:
5/8+3/4=11/8 then,-2/3-5/6=-3/2