Y = 2x - 5
3x + 8y + 32 = 56
3x + 8(2x - 5) + 32 = 56
3x + 8(2x) - 8(5) + 32 = 56
3x + 16x - 40 + 32 = 56
19x - 8 = 56
<u> + 8 + 8</u>
<u>19x</u> = <u>64</u>
19 19
x = 3.4
y = 2(3.4) - 5
y = 6.8 - 5
y = 1.8
(x, y) = (3.4, 1.8)
Answer:
<em>" Expected Payoff " ⇒ $ 1.56 ; Type in 1.56</em>
Step-by-step explanation:
Consider the steps below;
![Tickets That Can Be Entered - 1 Ticket,\\Total Tickets Entered - 1000 Tickets,\\\\Proportion - 1 / 1000,\\Money One ( First Ticket ) = 820 Dollars,\\Money One ( Second Ticket ) = 740 Dollars,\\\\Proportionality ( First ) - 1 / 1000 = x / 820,\\Proportionality ( Second ) - 1 / 1000 = x / 740\\\\1 / 1000 = x / 820,\\1000 * x = 820,\\x = 820 / 1000,\\x = 0.82,\\\\1 / 1000 = x / 740,\\1000 * x = 740,\\x = 740 / 1000,\\x = 0.74\\\\Conclusion ; " Expected Payoff " = 0.82 + 0.74 = 1.56](https://tex.z-dn.net/?f=Tickets%20That%20Can%20Be%20Entered%20-%201%20Ticket%2C%5C%5CTotal%20Tickets%20Entered%20-%201000%20Tickets%2C%5C%5C%5C%5CProportion%20-%201%20%2F%201000%2C%5C%5CMoney%20One%20%28%20First%20Ticket%20%29%20%3D%20820%20Dollars%2C%5C%5CMoney%20One%20%28%20Second%20Ticket%20%29%20%3D%20740%20Dollars%2C%5C%5C%5C%5CProportionality%20%28%20First%20%29%20-%201%20%2F%201000%20%3D%20x%20%2F%20820%2C%5C%5CProportionality%20%28%20Second%20%29%20-%201%20%2F%201000%20%3D%20x%20%2F%20740%5C%5C%5C%5C1%20%2F%201000%20%3D%20x%20%2F%20820%2C%5C%5C1000%20%2A%20x%20%3D%20820%2C%5C%5Cx%20%3D%20820%20%2F%201000%2C%5C%5Cx%20%3D%200.82%2C%5C%5C%5C%5C1%20%2F%201000%20%3D%20x%20%2F%20740%2C%5C%5C1000%20%2A%20x%20%3D%20740%2C%5C%5Cx%20%3D%20740%20%2F%201000%2C%5C%5Cx%20%3D%200.74%5C%5C%5C%5CConclusion%20%3B%20%22%20Expected%20Payoff%20%22%20%3D%200.82%20%2B%200.74%20%3D%201.56)
<em>Solution; " Expected Payoff " ⇒ $ 1.56</em>
Answer: The area of the triangle would be 256.
Explanation: You need to multiply both 16 and 16 together, which will then get your answer which is 256.☺️
This is a difference of squares, meaning that when you multiply the binomials it would be the front term squared minus the last term squared.
The front term squared = (3A) squared = 9A squared
The last term squared = (4B) squared = 16B squared
Final Answer: D. 9A squared - 16B squared
For one semester a School A-
750 + 200 = 950
For one semester at School B-
10 percent off of 1,000 is 900
School A- $950
School B- $900