Answer:
hgvjkhy88ubuybyi
Step-by-step explanation:
hjuoihgvgbhko
Answer:
The answer is...
Step-by-step explanation:
rjbh4ewcnmdbscjewdishkfnciewjhdbfh
Answer: 0.6827
Step-by-step explanation:
Given : Mean IQ score : 
Standard deviation : 
We assume that adults have IQ scores that are normally distributed .
Let x be the random variable that represents the IQ score of adults .
z-score : 
For x= 90

For x= 120

By using the standard normal distribution table , we have
The p-value : 

Hence, the probability that a randomly selected adult has an IQ between 90 and 120 =0.6827
The equation can be used to determine t, the weight of the textbooks is t = 0.7w
Given:
let
Total weight = w
Weight of notebook = n
Weight of backpack = b
Weight of textbook = t
w = n + b + t
where
n = 4 pounds
b = 2 pounds
t = 0.7w
So
w = 4 + 2 + 0.7w
w - 0.7w = 4 + 2
0.3w = 6
w = 6/0.3
w = 20
Recall,
t = 0.7w
= 0.7(20)
= 14 pounds
Therefore, the weight of the textbook is 14 pounds
Learn more about equation:
brainly.com/question/4916384
Took a screenshot cause the one sign isn’t on text