F(x) =16ˣ and g(x) = 16⁽ˣ/₂⁾
Since 16 = 2⁴, then we can write:
f(x) =2⁽⁴ˣ⁾ and g(x) = 2⁽⁴ˣ/₂⁾ = 2²ˣ
for x = 1 f(x) = 2⁴ = 16
for x = 1 g(x) = 2² = 4
(√16 = 4)
for x = 2 f(x) = 2⁸ = 256
for x = 2 g(x) = 2⁴ =16
(√256) = 16
for x = 3 f(x) = 2¹² = 4096
for x = 1 g(x) = 2⁶ = 64
(√4096 = 64)
We notice that:
The output values of g(x) are the square root of the output values of f(x) for the same value of x.
Step-by-step explanation:
We have

First, 125 is a perfect cube because

and
x^3 is a perfect cube because

so we can use the difference of cubes identity

Let say we have two perfect cubes:
64 because 8×8×8=64
and 27 because 3×3×3=27 and let subtract

we know that

but using the difference of cubes identity we should get the same thing.
Remeber cube root of 64 is 4 and cube root of 27 is 3 so we have


So the difference of cubes works for real numbers. This is a good way to help remeber the identity using real numbers.
Back on to the topic,
we know that 5 is cube root of 125 and x is the cube root of x^3 so we have


Answer:
Maby b
Step-by-step explanation:
sorry if wrong
Answer:
I think it 19.6
Step-by-step explanation:
Sorry if im wrong