Answer:
vₓ = xg/2y
Explanation:
In this question, let us find the time it takes for the ball on the right that has zero initial velocity to reach the ground.
By newton equation of motion we know that
y = v₀ t - ½ g t²
t = 2y / g
This is the time it takes for the ball on the right to reach the ground; at this time the ball on the left travels a distance
vₓ = x/t
vₓ = xg/2y
vₓ = xg/2y
Where we assume that x and y are known.
Answer:
d. 50 C
Explanation:
In this problem, we have to add 800 ml of water at 20 Celsius to 800 ml of water at 80 Celsius.
According to the 2nd law of thermodynamics, heat transfers from hot to cold temperature.
The quantity of both the different waters is equal so this makes it very easy. All we have to do is find the mean of both the temperatures:
Final temperature = (20 C + 80 C)/2
= 50 Celsius
Moons revolve around a planet, and planets revolve around the sun. Ganymede is considered a moon because it revolves around the planet Jupiter, therefore, it is a moon. :) I hope this helps!
Answer:D
Explanation:according to the law of conservation of energy/momentum, when two bodies collides, their total momentum and energy before and after collision are equal. Given that the two bodies move with the same velocities after collision, means that the law has not been violated since momentum = mass x velocity (where mass is constant)