Answer:
Explanation:
Using Boyles law
Boyle's law states that, the volume of a given gas is inversely proportional to it's pressure, provided that temperature is constant
V ∝ 1 / P
V = k / P
VP = k
Then,
V_1 • P_1 = V_2 • P_2
So, if we want an increase in pressure that will decrease volume of mercury by 0.001%
Then, let initial volume be V_1 = V
New volume is V_2 = 0.001% of V
V_2 = 0.00001•V
Let initial pressure be P_1 = P
So,
Using the equation above
V_1•P_1 = V_2•P_2
V × P = 0.00001•V × P_2
Make P_2 subject of formula by dividing be 0.00001•V
P_2 = V × P / 0.00001 × V
Then,
P_2 = 100000 P
So, the new pressure has to be 10^5 times of the old pressure
Now, using bulk modulus
Bulk modulus of mercury=2.8x10¹⁰N/m²
bulk modulus = P/(-∆V/V)
-∆V = 0.001% of V
-∆V = 0.00001•V
-∆V = 10^-5•V
-∆V/V = 10^-5
Them,
Bulk modulus = P / (-∆V/V)
2.8 × 10^10 = P / 10^-5
P = 2.8 × 10^10 × 10^-5
P = 2.8 × 10^5 N/m²
Outside to the inside: Capsid, core, genetic material
Answer:
at the beginning: 
when the plates are pulled apart: 
Explanation:
The capacitance of a parallel-plate capacitor is given by

where
k is the relative permittivity of the medium (for air, k=1, so we can omit it)
is the permittivity of free space
A is the area of the plates of the capacitor
d is the separation between the plates
In this problem, we have:
is the area of the plates
is the separation between the plates at the beginning
Substituting into the formula, we find

Later, the plates are pulled apart to
, so the capacitance becomes

Answer:
19.08 m/s
Explanation:
f = actual frequency emitted by the parked car's horn = 440 Hz
V = speed of sound = 342 m/s
f' = frequency of the horn observed by you = 466 Hz
v = speed of your car moving towards the parked car = ?
frequency of the horn observed by you is given as


v = 19.08 m/s
Use the concept of beat frequency to find the applicable final freqeuncy for 20Hz beat frequency.
Beat can be defined as 'the interference pattern between two sounds of slightly different frequencies0
The expression for beat frequency is given as

Where,
Final frequency
Initial frequency
The beat frequency for us is 25Hz and the initial frequency is 240Hz, then

Being an absolute value, two values are possible, both in addition and subtraction:

The two possible values are

