Answer:
6.14 s
Explanation:
The time the rocket takes to reach the top is only determined from its vertical motion.
The initial vertical velocity of the rocket is:

where
u = 100 m/s is the initial speed
is the angle of launch
Now we can apply the suvat equation for an object in free-fall:

where
is the vertical velocity at time t
is the acceleration of gravity
The rocket reaches the top when

So by substituting into the equation, we find the time t at which this happens:

Formula for feild strength= F/q
q=7.0^10-5 coulombs
F=5.2 N
E=5.2 / 7.0^10-5
E=
The recoil velocity of cannon is (4) 5.0 m/s
Explanation:
We can find the recoil velocity from the law of conservation of momentum.
The recoil velocity is velocity of body 2 after release of body 1, i.e. velocity of cannon after release of clown.
Let v2 be cannon's velocity, v1 be clown's velocity given = 15 m/sec
m1 be clown's mass = 100kg and m2 be cannon's mass given = 500kg.
So recoil velocity of cannon v2 is given by,
v2 = -(m1÷m2)v1
v2 = -(100÷500)15
v2 = -5 m/s
where the minus sign refers to the direction of cannon's recoil velocity being opposite to that of clown.
Hence, option (4)5.0 m/s is the correct answer.
Answer:
11.95m/s
Explanation:
A moving object has a kinetic energy of 150 J and a momentum of 25.1 kg·m/s.
a) Find the speed of the object. Answer in units of m
K. E =½mv²
150= ½mv²
Multiply both sides by 2
mv² = 300
Divide both sides by v²
m = 300/v² .................. Equation 1
Momentum is the product of mass and velocity
Momentum = mv
25.1 = mv
Divide both sides by v
m = 25.1/v ................ Equation 2
Equate equations 1 and 2
300/v² = 25.1/v
Cross multiply
25.1v² = 300v
Multiply v with both sides
25.1v = 300
Divide both sides by 25.1
v = 300/25.1
V = 11.95m/s
I hope this was helpful, please mark as brainliest
Answer:
1.8 m/s
Explanation:
here's the solution : -
momentum = mass × velocity
=》18 × 0.1
=》1.8 m/s