Answer:
1.4 * 10 ^-1 Ω
Explanation:
Hi,
For this question, we gotta use the formula
R = pL/A
p = The resistivity of your material at 20°C
L = length of the wire
A = cross-sectional area
The resistivity of tungsten is 5.60 * 10^-8 at 20°C
By plugging the values, we get:
R = (5.60 * 10^-8)(2.0)/(7.9*10^-7) = 1.4 * 10 ^-1 Ω
<span>In Ionic type of bonding, electrons are lost (more
protons than electrons and positive charge) or gained (more electrons than
protons, still a negative charge) by atoms, and the atoms are held together by
electrical attraction in the process. Covalent bondings are the sharing of electrons
as well as partial bondings. Covalent bondings’ electrons have the same charges
thus, there is no gaining or losing electrons in the process of sharing. Strong
bondings are applicable only to Hydrogen (H) atoms. </span>
Answer: 4
Explanation: speed= distance/time
Answer:
Explanation:
Given that,
A point charge is placed between two charges
Q1 = 4 μC
Q2 = -1 μC
Distance between the two charges is 1m
We want to find the point when the electric field will be zero.
Electric field can be calculated using
E = kQ/r²
Let the point charge be at a distance x from the first charge Q1, then, it will be at 1 -x from the second charge.
Then, the magnitude of the electric at point x is zero.
E = kQ1 / r² + kQ2 / r²
0 = kQ1 / x² - kQ2 / (1-x)²
kQ1 / x² = kQ2 / (1-x)²
Divide through by k
Q1 / x² = Q2 / (1-x)²
4μ / x² = 1μ / (1 - x)²
Divide through by μ
4 / x² = 1 / (1-x)²
Cross multiply
4(1-x)² = x²
4(1-2x+x²) = x²
4 - 8x + 4x² = x²
4x² - 8x + 4 - x² = 0
3x² - 8x + 4 = 0
Check attachment for solution of quadratic equation
We found that,
x = 2m or x = ⅔m
So, the electric field will be zero if placed ⅔m from point charge A, OR ⅓m from point charge B.