Answer:
Scientific Notation: 4.45963 x 109 km (29.811 A.U.) Scientific Notation: 4.53687 x 109 km (30.327 A.U.) By Comparison: If you weigh 100 pounds on Earth, you would weigh 110 pounds on Neptune.
Hello
Explanation:
well I don't know if I can answer you well but I try .... I think it's HC2H202Cl... Thank you for your attention ✌️
Answer:
Explanation:
Hi there,
To get started, let's first observe our rate law:
we typically use square brackets [x] for chemistry kinetics, because they specifically tell us we are dealing with <em>concentrations</em>.
This rate law is in fourth-order, because the concentrations powers add up to 4. We are not told the unit of time for this prompt (unless you know it), so I just assumed the time unit to be "time."
To calculate the reaction rate, we simply plug in the concentration of A and B into the rate law. k is the <em>rate constant</em> and stays the same for an individual reaction.
![R=(0.1 \ M^{-3}*time^{-1})[1 \ M]^2[2 \ M]^2=0.4 \ M/time](https://tex.z-dn.net/?f=R%3D%280.1%20%5C%20M%5E%7B-3%7D%2Atime%5E%7B-1%7D%29%5B1%20%5C%20M%5D%5E2%5B2%20%5C%20M%5D%5E2%3D0.4%20%5C%20M%2Ftime)
Thus, the rate of reaction with those concentrations is 0.4 M/time.
Notice, the rate constant does in fact have units of it own. The unit for k can be calculated by knowing that:
- Rate (R) must end up with units of concentration (M) per time.
- The concentrations raised to a power can be used to help solve for the units of k.
If you liked this solution, leave it as Brainliest Answer and give a Rating!
True ! search it up on safari and it tells you that it’s true
Answer:
<h2>18 kg.m/s</h2>
Explanation:
The momentum of an object can be found by using the formula
momentum = mass × velocity
From the question we have
momentum = 2 × 9
We have the final answer as
<h3>18 kg.m/s</h3>
Hope this helps you