F ` ( x ) = ( x² )` · e^(5x) + x² · ( e^(5x) )` =
= 2 x · e^(5x) + 5 e^(5x) · x² =
= x e^(5x) ( 2 + 5 x )
f `` ( x ) = ( 2 x e^(5x) + 5 x² e^(5x) ) ` =
= ( 2 x ) ˙e^(5x) + 2 x ( e^(5x) )` + ( 5 x² ) ` · e^(5x) + ( e^(5x)) ` · 5 x² =
= 2 · e^(5x) + 10 x · e^(5x) + 10 x · e^(5x) + 25 x² · e^(5x) =
= e^(5x) · ( 2 + 20 x + 25 x² )
- 2 3/5 - 1 2/3
= -2 9/15 - 1 10/15
= (-2 9/15) + (- 1 10/15)
= -3 19/15
= -4 4/15
Answer is B
-4 4/15
The answer is 58, because 2/5 is equal to 0.4, and 0.4 multiplied by 145 is 58.