The domain is (-5,4). If that makes any sense, if it doesnt ill explain
Answer:
Answer is 
Step-by-step explanation:
To find the interval of x. Use our equations to equal each other.



Integrate.
![\frac{-x^3}{3}+x^2\\(\frac{-2^3}{3}+2^2)-[\frac{-0^3}{3}+0^2]\\-\frac{8}{3} +4-0\\-\frac{8}{3}+\frac{12}{3} =4/3](https://tex.z-dn.net/?f=%5Cfrac%7B-x%5E3%7D%7B3%7D%2Bx%5E2%5C%5C%28%5Cfrac%7B-2%5E3%7D%7B3%7D%2B2%5E2%29-%5B%5Cfrac%7B-0%5E3%7D%7B3%7D%2B0%5E2%5D%5C%5C-%5Cfrac%7B8%7D%7B3%7D%20%2B4-0%5C%5C-%5Cfrac%7B8%7D%7B3%7D%2B%5Cfrac%7B12%7D%7B3%7D%20%20%3D4%2F3)
Using Desmos I have Graphs of both of the equations you have provided. The problem asks us to find the shaded region between those curves/equations.
Proof Check your interval of x.
A.) <span>Scalene Triangle has no Lines of S</span>ymmetry
B.) <span>A </span>Square<span> (4 sides) </span><span>has </span>4 Lines of Symmetry
C.) <span>A </span>Regular Hexagon<span> (6 sides) </span>has 6 Lines of Symmetry
D.) <span>A </span>Regular Octagon<span> (8 sides) </span><span>has </span>8 Lines of Symmetry