9514 1404 393
Answer:
(a) none of the above
Step-by-step explanation:
The largest exponent in the function shown is 2. That makes it a 2nd-degree function, also called a quadratic function. The graph of such a function is a parabola -- a U-shaped curve.
The coefficient of the highest-degree term is the "leading coefficient." In this case, that is the coefficient of the x² term, which is 1. When the leading coefficient of an even-degree function is positive, the U curve has its open end at the top of the graph. We say it "opens upward." (When the leading coefficient is negative, the curve opens downward.)
This means the bottom of the U is the minimum value the function has. For a quadratic in the form ax²+bx+c, the horizontal location of the minimum on the graph is at x=-b/(2a). This extreme point on the curve is called the "vertex."
This function has a=1, b=1, and c=3. The minimum of the function is where ...
x = -b/(2·a) = -1/(2·1) = -1/2
This value is not listed among the answer choices, so the correct choice for this function is ...
none of the above
__
The attached graph of the function confirms that the minimum is located at x=-1/2
_____
<em>Additional comment</em>
When you're studying quadratic functions, there are few formulas that you might want to keep handy. The formula for the location of the vertex is one of them.
The given expression is

We have to find the discriminant first . And for that, first we need to move whole terms of the left side to right side, that is


The formula of discriminant is

Substituting the values of a,b and c, we will get

And since the discriminant is greater than 0, or it is positive so we have two real roots.
Therefore the correct option is B .
Answer: -10x
Explanation: Multiply -2 by 5x
65* It is drawn with a round ruller...